Universal Functions (ufuncs)

The following elementwise functions can be used for computing with any of NDArray, C2Array, NDField and LazyExpr.

Their result is always a LazyExpr instance, which can be evaluated (with compute or __getitem__) to get the actual values of the computation.

Note: The functions conj, real, imag, contains, where are not technically ufuncs.

abs(ndarr, /)

Calculate the absolute value element-wise.

acos(ndarr, /)

Compute the inverse cosine, element-wise.

acosh(ndarr, /)

Compute the inverse hyperbolic cosine, element-wise.

add(x1, x2)

Computes the value of x1_i + x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

arccos(ndarr, /)

Compute the inverse cosine, element-wise.

arccosh(ndarr, /)

Compute the inverse hyperbolic cosine, element-wise.

arcsin(ndarr, /)

Compute the inverse sine, element-wise.

arcsinh(ndarr, /)

Compute the inverse hyperbolic sine, element-wise.

arctan(ndarr, /)

Compute the inverse tangent, element-wise.

arctan2(ndarr1, ndarr2, /)

Compute the element-wise arc tangent of ndarr1 / ndarr2 choosing the quadrant correctly.

arctanh(ndarr, /)

Compute the inverse hyperbolic tangent, element-wise.

asin(ndarr, /)

Compute the inverse sine, element-wise.

asinh(ndarr, /)

Compute the inverse hyperbolic sine, element-wise.

atan(ndarr, /)

Compute the inverse tangent, element-wise.

atan2(ndarr1, ndarr2, /)

Compute the element-wise arc tangent of ndarr1 / ndarr2 choosing the quadrant correctly.

atanh(ndarr, /)

Compute the inverse hyperbolic tangent, element-wise.

bitwise_and(x1, x2)

Computes the value of x1_i & x2_i for each element x1_i of the input array x1 and x2_i of x2.

bitwise_invert(x1)

Computes the value of ~x1_i for each element x1_i of the input array x1.

bitwise_left_shift(x1, x2)

Shifts the bits of each element x1_i of the input array x1 to the left by appending x2_i (i.e., the respective element in the input array x2) zeros to the right of x1_i.

bitwise_or(x1, x2)

Computes the value of x1_i | x2_i for each element x1_i of the input array x1 and x2_i of x2.

bitwise_right_shift(x1, x2)

Shifts the bits of each element x1_i of the input array x1 to the right according to the respective element x2_i of the input array x2.

bitwise_xor(x1, x2)

Computes the value of x1_i ^ x2_i for each element x1_i of the input array x1 and x2_i of x2.

ceil(x)

Rounds each element x_i of the input array x to the smallest (i.e., closest to -infinity) integer-valued number that is not smaller than x_i.

conj(ndarr, /)

Return the complex conjugate, element-wise.

copysign(x1, x2)

Composes a floating-point value with the magnitude of x1_i and the sign of x2_i for each element of the input array x1.

cos(ndarr, /)

Trigonometric cosine, element-wise.

cosh(ndarr, /)

Compute the hyperbolic cosine, element-wise.

divide(x1, x2)

Computes the value of x1_i / x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

equal(x1, x2)

Computes the truth value of x1_i == x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

exp(ndarr, /)

Calculate the exponential of all elements in the input array.

expm1(ndarr, /)

Calculate exp(ndarr) - 1 for all elements in the array.

floor(x)

Rounds each element x_i of the input array x to the greatest (i.e., closest to +infinity) integer-valued number that is not greater than x_i.

floor_divide(x1, x2)

Computes the value of x1_i // x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

greater(x1, x2)

Computes the truth value of x1_i > x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

greater_equal(x1, x2)

Computes the truth value of x1_i >= x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

hypot(x1, x2)

Computes the square root of the sum of squares for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

isfinite(ndarr, /)

Return True/False for finite values element-wise.

isinf(ndarr, /)

Return True/False for infinite values element-wise.

isnan(ndarr, /)

Return True/False for not-a-number values element-wise.

less(x1, x2)

Computes the truth value of x1_i < x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

less_equal(x1, x2)

Computes the truth value of x1_i <= x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

log(ndarr, /)

Compute the natural logarithm, element-wise.

log1p(ndarr, /)

Return the natural logarithm of one plus the input array, element-wise.

log2(ndarr, /)

Return the base 2 logarithm of the input array, element-wise.

log10(ndarr, /)

Return the base 10 logarithm of the input array, element-wise.

logaddexp(x1, x2)

Calculates the logarithm of the sum of exponentiations log(exp(x1) + exp(x2)) for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

logical_and(x1, x2)

Computes the value of x1_i & x2_i for each element x1_i of the input array x1 and x2_i of x2.

logical_not(x1)

Computes the value of ~x1_i for each element x1_i of the input array x1.

logical_or(x1, x2)

Computes the value of x1_i | x2_i for each element x1_i of the input array x1 and x2_i of x2.

logical_xor(x1, x2)

Computes the value of x1_i ^ x2_i for each element x1_i of the input array x1 and x2_i of x2.

matmul(x1, x2, **kwargs)

Computes the matrix product between two Blosc2 NDArrays.

maximum(x1, x2)

Computes the maximum value for each element x1_i of the input array x1 relative to the respective element x2_i of the input array x2.

minimum(x1, x2)

Computes the minimum value for each element x1_i of the input array x1 relative to the respective element x2_i of the input array x2.

multiply(x1, x2)

Computes the value of x1_i * x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

negative(x1)

Computes the numerical negative of each element x_i (i.e., out_i = -x_i) of the input array x.

nextafter(x1, x2)

Returns the next representable floating-point value for each element x1_i of the input array x1 in the direction of the respective element x2_i of the input array x2.

not_equal(x1, x2)

Computes the truth value of x1_i != x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

positive(x1)

Computes the numerical positive of each element x_i (i.e., out_i = +x_i) of the input array x.

pow(x1, x2)

Computes the value of x1_i**x2_i for each element x1_i of the input array x1 and x2_i of x2.

reciprocal(x)

Computes the value of 1/x1_i for each element x1_i of the input array x1.

remainder(x1, x2)

Returns the remainder of division for each element x1_i of the input array x1 and the respective element x2_i of the input array x2.

sign(x)

Returns an indication of the sign of a number for each element x_i of the input array x.

signbit(x)

Determines whether the sign bit is set for each element x_i of the input array x.

sin(ndarr, /)

Compute the trigonometric sine, element-wise.

sinh(ndarr, /)

Hyperbolic sine, element-wise.

sqrt(ndarr, /)

Return the non-negative square-root of an array, element-wise.

square(x1)

Computes the value of x1_i**2 for each element x1_i of the input array x1.

subtract(x1, x2)

Computes the value of x1_i - x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

tan(ndarr, /)

Compute the trigonometric tangent, element-wise.

tanh(ndarr, /)

Compute the hyperbolic tangent, element-wise.

trunc(x)

Rounds each element x_i of the input array x to the closest to 0 integer-valued number.

vecdot(x1, x2[, axis])

Computes the (vector) dot product of two arrays.

blosc2.abs(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Calculate the absolute value element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression that can be evaluated to get the absolute values.

Return type:

LazyExpr

References

np.abs

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-5, -3, 0, 2, 4])
>>> ndarray = blosc2.asarray(values)
>>> result_ = blosc2.abs(ndarray)
>>> result = result_[:]
>>> print("Original values:", values)
Original values: [-5 -3  0  2  4]
>>> print("Absolute values:", result)
Absolute values: [5. 3. 0. 2. 4.]
blosc2.acos(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse cosine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arccos

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arccos(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arccos:", result)
Arccos: [3.14159265 2.0943951  1.57079633 1.04719755 0.        ]
blosc2.acosh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic cosine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arccosh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([1, 2, 3, 4, 5])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arccosh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [1 2 3 4 5]
>>> print("Arccosh:", result)
Arccosh: [0.         1.3169579  1.76274717 2.06343707 2.29243167]
blosc2.add(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i + x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.add

blosc2.arccos(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse cosine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arccos

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arccos(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arccos:", result)
Arccos: [3.14159265 2.0943951  1.57079633 1.04719755 0.        ]
blosc2.arccosh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic cosine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arccosh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([1, 2, 3, 4, 5])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arccosh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [1 2 3 4 5]
>>> print("Arccosh:", result)
Arccosh: [0.         1.3169579  1.76274717 2.06343707 2.29243167]
blosc2.arcsin(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse sine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arcsin

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arcsin(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arcsin:", result)
Arcsin: [-1.57079633 -0.52359878  0.          0.52359878  1.57079633]
blosc2.arcsinh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic sine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arcsinh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-2, -1, 0, 1, 2])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arcsinh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-2 -1  0  1  2]
>>> print("Arcsinh:", result)
Arcsinh: [-1.44363548 -0.88137359  0.          0.88137359  1.44363548]
blosc2.arctan(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse tangent of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arctan

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arctan(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arctan:", result)
Arctan: [-0.78539816 -0.46364761  0.          0.46364761  0.78539816]
blosc2.arctan2(ndarr1: NDArray | NDField | C2Array, ndarr2: NDArray | NDField | C2Array, /) LazyExpr[source]

Compute the element-wise arc tangent of ndarr1 / ndarr2 choosing the quadrant correctly.

Parameters:
Returns:

out – A lazy expression representing the element-wise arc tangent of ndarr1 / ndarr2. The result can be evaluated.

Return type:

LazyExpr

References

np.arctan2

Examples

>>> import numpy as np
>>> import blosc2
>>> y = np.array([0, 1, 0, -1, 1])
>>> x = np.array([1, 1, -1, -1, 0])
>>> ndarray_y = blosc2.asarray(y)
>>> ndarray_x = blosc2.asarray(x)
>>> result_lazy = blosc2.arctan2(ndarray_y, ndarray_x)
>>> result = result_lazy[:]
>>> print("y:", y)
y: [ 0  1  0 -1  1]
>>> print("x:", x)
x: [ 1  1 -1 -1  0]
>>> print("Arctan2(y, x):", result)
Arctan2(y, x): [ 0.          0.78539816  3.14159265 -2.35619449  1.57079633]
blosc2.arctanh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic tangent of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arctanh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-0.9, -0.5, 0, 0.5, 0.9])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arctanh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-0.9 -0.5  0.   0.5  0.9]
>>> print("Arctanh:", result)
Arctanh: [-1.47221949 -0.54930614  0.          0.54930614  1.47221949]
blosc2.asin(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse sine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arcsin

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arcsin(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arcsin:", result)
Arcsin: [-1.57079633 -0.52359878  0.          0.52359878  1.57079633]
blosc2.asinh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic sine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arcsinh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-2, -1, 0, 1, 2])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arcsinh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-2 -1  0  1  2]
>>> print("Arcsinh:", result)
Arcsinh: [-1.44363548 -0.88137359  0.          0.88137359  1.44363548]
blosc2.atan(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse tangent of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arctan

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.arctan(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-1.  -0.5  0.   0.5  1. ]
>>> print("Arctan:", result)
Arctan: [-0.78539816 -0.46364761  0.          0.46364761  0.78539816]
blosc2.atan2(ndarr1: NDArray | NDField | C2Array, ndarr2: NDArray | NDField | C2Array, /) LazyExpr[source]

Compute the element-wise arc tangent of ndarr1 / ndarr2 choosing the quadrant correctly.

Parameters:
Returns:

out – A lazy expression representing the element-wise arc tangent of ndarr1 / ndarr2. The result can be evaluated.

Return type:

LazyExpr

References

np.arctan2

Examples

>>> import numpy as np
>>> import blosc2
>>> y = np.array([0, 1, 0, -1, 1])
>>> x = np.array([1, 1, -1, -1, 0])
>>> ndarray_y = blosc2.asarray(y)
>>> ndarray_x = blosc2.asarray(x)
>>> result_lazy = blosc2.arctan2(ndarray_y, ndarray_x)
>>> result = result_lazy[:]
>>> print("y:", y)
y: [ 0  1  0 -1  1]
>>> print("x:", x)
x: [ 1  1 -1 -1  0]
>>> print("Arctan2(y, x):", result)
Arctan2(y, x): [ 0.          0.78539816  3.14159265 -2.35619449  1.57079633]
blosc2.atanh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the inverse hyperbolic tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the inverse hyperbolic tangent of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.arctanh

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-0.9, -0.5, 0, 0.5, 0.9])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.arctanh(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-0.9 -0.5  0.   0.5  0.9]
>>> print("Arctanh:", result)
Arctanh: [-1.47221949 -0.54930614  0.          0.54930614  1.47221949]
blosc2.bitwise_and(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i & x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_and

blosc2.bitwise_invert(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of ~x1_i for each element x1_i of the input array x1.

Parameters:

x1 (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – Input array, integer or boolean.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_invert

blosc2.bitwise_left_shift(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Shifts the bits of each element x1_i of the input array x1 to the left by appending x2_i (i.e., the respective element in the input array x2) zeros to the right of x1_i.

Note: this operation is equivalent to multiplying x1 by 2**x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_left_shift

blosc2.bitwise_or(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i | x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_or

blosc2.bitwise_right_shift(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Shifts the bits of each element x1_i of the input array x1 to the right according to the respective element x2_i of the input array x2.

Note: This operation is an arithmetic shift (i.e., sign-propagating) and thus equivalent to floor division by a power of two.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_right_shift

blosc2.bitwise_xor(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i ^ x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.bitwise_xor

blosc2.ceil(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Rounds each element x_i of the input array x to the smallest (i.e., closest to -infinity) integer-valued number that is not smaller than x_i.

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any real-valued data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.ceil

blosc2.conj(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return the complex conjugate, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the complex conjugate of the input array.

Return type:

LazyExpr

References

np.conj

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([1+2j, 3-4j, -5+6j, 7-8j])
>>> ndarray = blosc2.asarray(values)
>>> result_ = blosc2.conj(ndarray)
>>> result = result_[:]
>>> print("Original values:", values)
Original values: [ 1.+2.j  3.-4.j -5.+6.j  7.-8.j]
>>> print("Complex conjugates:", result)
Complex conjugates: [ 1.-2.j  3.+4.j -5.-6.j  7.+8.j]
blosc2.copysign(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Composes a floating-point value with the magnitude of x1_i and the sign of x2_i for each element of the input array x1.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.copysign

blosc2.cos(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Trigonometric cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array containing angles in radians.

Returns:

out – A lazy expression representing the cosine of the input angles. The result can be evaluated.

Return type:

LazyExpr

References

np.cos

Examples

>>> import numpy as np
>>> import blosc2
>>> angles = np.array([0, np.pi/6, np.pi/4, np.pi/2, np.pi])
>>> nd_array = blosc2.asarray(angles)
>>> result_ = blosc2.cos(nd_array)
>>> result = result_[:]
>>> print("Angles in radians:", angles)
Angles in radians: [0.         0.52359878 0.78539816 1.57079633 3.14159265]
>>> print("Cosine of the angles:", result)
Cosine of the angles: [ 1.00000000e+00  8.66025404e-01  7.07106781e-01  6.12323400e-17
-1.00000000e+00]
blosc2.cosh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the hyperbolic cosine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the hyperbolic cosine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.cosh

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-2, -1, 0, 1, 2])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.cosh(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-2 -1  0  1  2]
>>> print("Hyperbolic cosine:", result)
Hyperbolic cosine: [3.76219569 1.54308063 1.         1.54308063 3.76219569]
blosc2.divide(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i / x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.divide

blosc2.equal(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i == x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.equal

blosc2.exp(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Calculate the exponential of all elements in the input array.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the exponential of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.exp

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([0, 1, 2, 3, 4])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.exp(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [0 1 2 3 4]
>>> print("Exponential:", result)
Exponential: [ 1.          2.71828183  7.3890561  20.08553692 54.59815003]
blosc2.expm1(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Calculate exp(ndarr) - 1 for all elements in the array.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing exp(ndarr) - 1 of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.expm1

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-1, -0.5, 0, 0.5, 1])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.expm1(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-1.  -0.5  0.   0.5  1. ]
>>> print("Expm1:", result)
Expm1: [-0.63212056 -0.39346934  0.          0.64872127  1.71828183]
blosc2.floor(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Rounds each element x_i of the input array x to the greatest (i.e., closest to +infinity) integer-valued number that is not greater than x_i.

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any real-valued data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.floor

blosc2.floor_divide(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i // x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.floor_divide

blosc2.greater(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i > x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.greater

blosc2.greater_equal(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i >= x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.greater_equal

blosc2.hypot(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the square root of the sum of squares for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.hypot

blosc2.isfinite(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return True/False for finite values element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression that can be evaluated to get the True/False array of results.

Return type:

LazyExpr

References

np.isfinite

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-5, -3, np.inf, 2, 4])
>>> ndarray = blosc2.asarray(values)
>>> result_ = blosc2.isfinite(ndarray)
>>> result = result_[:]
>>> print("isfinite:", result)
isfinite: [True, True, False, True, True]
blosc2.isinf(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return True/False for infinite values element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression that can be evaluated to get the True/False array of results.

Return type:

LazyExpr

References

np.isinf

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-5, -3, np.inf, 2, 4])
>>> ndarray = blosc2.asarray(values)
>>> result_ = blosc2.isinf(ndarray)
>>> result = result_[:]
>>> print("isinf:", result)
isinf: [False, False, True, False, False]
blosc2.isnan(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return True/False for not-a-number values element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression that can be evaluated to get the True/False array of results.

Return type:

LazyExpr

References

np.isnan

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-5, -3, np.nan, 2, 4])
>>> ndarray = blosc2.asarray(values)
>>> result_ = blosc2.isnan(ndarray)
>>> result = result_[:]
>>> print("isnan:", result)
isnan: [False, False, True, False, False]
blosc2.less(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i < x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.less

blosc2.less_equal(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i <= x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.less_equal

blosc2.log(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the natural logarithm, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the natural logarithm of the input array

Return type:

LazyExpr

References

np.log

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([1, 2, 3, 4, 5])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.log(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [1 2 3 4 5]
>>> print("Logarithm (base e):", result)
Logarithm (base e): [0.         0.69314718 1.09861229 1.38629436 1.60943791]
blosc2.log1p(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return the natural logarithm of one plus the input array, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the natural logarithm of one plus the input array.

Return type:

LazyExpr

References

np.log1p

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([-0.9, -0.5, 0, 0.5, 0.9])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.log1p(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [-0.9 -0.5  0.   0.5  0.9]
>>> print("Log1p (log(1 + x)):", result)
Log1p (log(1 + x)): [-2.30258509 -0.69314718  0.          0.40546511  0.64185389]
blosc2.log2(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return the base 2 logarithm of the input array, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the base 2 logarithm of the input array.

Return type:

LazyExpr

References

np.log2

blosc2.log10(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return the base 10 logarithm of the input array, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the base 10 logarithm of the input array.

Return type:

LazyExpr

References

np.log10

Examples

>>> import numpy as np
>>> import blosc2
>>> values = np.array([1, 10, 100, 1000, 10000])
>>> ndarray = blosc2.asarray(values)
>>> result_lazy = blosc2.log10(ndarray)
>>> result = result_lazy[:]
>>> print("Original values:", values)
Original values: [    1    10   100  1000 10000]
>>> print("Logarithm (base 10):", result)
Logarithm (base 10): [0. 1. 2. 3. 4.]
blosc2.logaddexp(x1: int | float | NDArray, x2: int | float | NDArray) NDArray[source]

Calculates the logarithm of the sum of exponentiations log(exp(x1) + exp(x2)) for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – An array containing element-wise results.

Return type:

NDArray

blosc2.logical_and(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i & x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.logical_and

blosc2.logical_not(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of ~x1_i for each element x1_i of the input array x1.

Parameters:

x1 (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – Input array, boolean.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.logical_not

blosc2.logical_or(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i | x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.logical_or

blosc2.logical_xor(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i ^ x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.logical_xor

blosc2.matmul(x1: NDArray | ndarray, x2: NDArray, **kwargs: Any) NDArray[source]

Computes the matrix product between two Blosc2 NDArrays.

Parameters:
  • x1 (NDArray | np.ndarray) – The first input array.

  • x2 (NDArray | np.ndarray) – The second input array.

  • kwargs (Any, optional) – Keyword arguments that are supported by the empty() constructor.

Returns:

out – The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors.

Return type:

NDArray

Raises:

ValueError

If the last dimension of x1 is not the same size as the second-to-last dimension of x2.

If a scalar value is passed in.

References

numpy.matmul

Examples

For 2-D arrays it is the matrix product:

>>> import numpy as np
>>> import blosc2
>>> a = np.array([[1, 2],
...               [3, 4]])
>>> nd_a = blosc2.asarray(a)
>>> b = np.array([[2, 3],
...               [2, 1]])
>>> nd_b = blosc2.asarray(b)
>>> blosc2.matmul(nd_a, nd_b)
array([[ 6,  5],
       [14, 13]])

For 2-D mixed with 1-D, the result is the usual.

>>> a = np.array([[1, 3],
...               [0, 1]])
>>> nd_a = blosc2.asarray(a)
>>> v = np.array([1, 2])
>>> nd_v = blosc2.asarray(v)
>>> blosc2.matmul(nd_a, nd_v)
array([7, 2])
>>> blosc2.matmul(nd_v, nd_a)
array([1, 5])
blosc2.maximum(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the maximum value for each element x1_i of the input array x1 relative to the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.maximum

blosc2.minimum(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the minimum value for each element x1_i of the input array x1 relative to the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.minimum

blosc2.multiply(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i * x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.multiply

blosc2.negative(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the numerical negative of each element x_i (i.e., out_i = -x_i) of the input array x.

Parameters:

x1 (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.negative

blosc2.nextafter(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Returns the next representable floating-point value for each element x1_i of the input array x1 in the direction of the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.nextafter

blosc2.not_equal(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the truth value of x1_i != x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.not_equal

blosc2.positive(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the numerical positive of each element x_i (i.e., out_i = +x_i) of the input array x.

Parameters:

x1 (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.positive

blosc2.pow(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Computes the value of x1_i**x2_i for each element x1_i of the input array x1 and x2_i of x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.pow

blosc2.reciprocal(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of 1/x1_i for each element x1_i of the input array x1.

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array, floating-point data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.reciprocal

blosc2.remainder(x1: NDArray | NDField | C2Array | LazyExpr | int | float | complex, x2: NDArray | NDField | C2Array | LazyExpr | int | float | complex) LazyExpr[source]

Returns the remainder of division for each element x1_i of the input array x1 and the respective element x2_i of the input array x2.

Note: This function is equivalent to the Python modulus operator x1_i % x2_i.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.remainder

blosc2.sign(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Returns an indication of the sign of a number for each element x_i of the input array x.

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any numeric data type.

Returns:

out – A LazyArray containing the element-wise results (-1, 0 or 1).

Return type:

LazyExpr

References

np.sign

blosc2.signbit(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Determines whether the sign bit is set for each element x_i of the input array x.

The sign bit of a real-valued floating-point number x_i is set whenever x_i is either -0, less than zero, or a signed NaN (i.e., a NaN value whose sign bit is 1).

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any real-valued floating-point data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.signbit

blosc2.sin(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the trigonometric sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array containing angles in radians.

Returns:

out – A lazy expression representing the sine of the input angles. The result can be evaluated.

Return type:

LazyExpr

References

np.sin

Examples

>>> import numpy as np
>>> import blosc2
>>> angles = np.array([0, np.pi/6, np.pi/4, np.pi/2, np.pi])
>>> nd_array = blosc2.asarray(angles)
>>> result_ = blosc2.sin(nd_array)
>>> result = result_[:]
>>> print("Angles in radians:", angles)
Angles in radians: [0.         0.52359878 0.78539816 1.57079633 3.14159265]
>>> print("Sine of the angles:", result)
Sine of the angles: [0.00000000e+00 5.00000000e-01 7.07106781e-01 1.00000000e+00
1.22464680e-16]
blosc2.sinh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Hyperbolic sine, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the hyperbolic sine of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.sinh

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-2, -1, 0, 1, 2])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.sinh(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-2 -1  0  1  2]
>>> print("Hyperbolic sine:", result)
Hyperbolic sine: [-3.62686041 -1.17520119  0.          1.17520119  3.62686041]
blosc2.sqrt(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Return the non-negative square-root of an array, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the square root of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.sqrt

Examples

>>> import numpy as np
>>> import blosc2
>>> data = np.array([0, np.pi/6, np.pi/4, np.pi/2, np.pi])
>>> nd_array = blosc2.asarray(data)
>>> result_ = blosc2.sqrt(nd_array)
>>> result = result_[:]
>>> print("Original numbers:", data)
Original numbers: [ 0  1  4  9 16 25]
>>> print("Square roots:", result)
Square roots: [0. 1. 2. 3. 4. 5.]
blosc2.square(x1: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i**2 for each element x1_i of the input array x1.

Parameters:

x1 (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.square

blosc2.subtract(x1: NDArray | NDField | C2Array | LazyExpr, x2: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Computes the value of x1_i - x2_i for each element x1_i of the input array x1 with the respective element x2_i of the input array x2.

Parameters:
Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.subtract

blosc2.tan(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the trigonometric tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array containing angles in radians.

Returns:

out – A lazy expression representing the tangent of the input angles. The result can be evaluated.

Return type:

LazyExpr

References

np.tan

Examples

>>> import numpy as np
>>> import blosc2
>>> angles = np.array([0, np.pi/6, np.pi/4, np.pi/2, np.pi])
>>> nd_array = blosc2.asarray(angles)
>>> result_ = blosc2.tan(nd_array)
>>> result = result_[:]
>>> print("Angles in radians:", angles)
Angles in radians: [0.         0.52359878 0.78539816 1.57079633 3.14159265]
>>> print("Tangent of the angles:", result)
Tangent of the angles: [ 0.00000000e+00  5.77350269e-01  1.00000000e+00  1.63312394e+16
-1.22464680e-16]
blosc2.tanh(ndarr: NDArray | NDField | C2Array | LazyExpr, /) LazyExpr[source]

Compute the hyperbolic tangent, element-wise.

Parameters:

ndarr (NDArray or NDField or C2Array or LazyExpr) – The input array.

Returns:

out – A lazy expression representing the hyperbolic tangent of the input array. The result can be evaluated.

Return type:

LazyExpr

References

np.tanh

Examples

>>> import numpy as np
>>> import blosc2
>>> numbers = np.array([-2, -1, 0, 1, 2])
>>> ndarray = blosc2.asarray(numbers)
>>> result_lazy = blosc2.tanh(ndarray)
>>> result = result_lazy[:]
>>> print("Original numbers:", numbers)
Original numbers: [-2 -1  0  1  2]
>>> print("Hyperbolic tangent:", result)
Hyperbolic tangent: [-0.96402758 -0.76159416  0.          0.76159416  0.96402758]
blosc2.trunc(x: NDArray | NDField | C2Array | LazyExpr) LazyExpr[source]

Rounds each element x_i of the input array x to the closest to 0 integer-valued number.

Parameters:

x (NDArray | NDField | blosc2.C2Array | blosc2.LazyExpr) – First input array. May have any real-valued data type.

Returns:

out – A LazyArray containing the element-wise results.

Return type:

LazyExpr

References

np.trunc

blosc2.vecdot(x1: NDArray, x2: NDArray, axis: int = -1, **kwargs) NDArray[source]

Computes the (vector) dot product of two arrays. Complex conjugates x1.

Parameters:
  • x1 (blosc2.NDArray) – First input array. Must have floating-point data type.

  • x2 (blosc2.NDArray) – Second input array. Must be compatible with x1 for all non-contracted axes (via broadcasting). The size of the axis over which to compute the dot product must be the same size as the respective axis in x1. Must have a floating-point data type.

  • axis (int) – The axis (dimension) of x1 and x2 containing the vectors for which to compute the dot product. Should be an integer on the interval [-N, -1], where N is min(x1.ndim, x2.ndim). Default: -1.

Returns:

out – If x1 and x2 are both one-dimensional arrays, a zero-dimensional containing the dot product; otherwise, a non-zero-dimensional array containing the dot products and having rank N-1, where N is the rank (number of dimensions) of the shape determined according to broadcasting along the non-contracted axes.

Return type:

blosc2.NDArray