Miscellaneous¶
This page documents the miscellaneous members of the blosc2
module that do not fit into other categories.
- blosc2.DEFAULT_COMPLEX¶
Default complex floating dtype.
- Attributes:
T
Scalar attribute identical to the corresponding array attribute.
base
Scalar attribute identical to the corresponding array attribute.
data
Pointer to start of data.
- device
dtype
Get array data-descriptor.
flags
The integer value of flags.
flat
A 1-D view of the scalar.
- itemset
itemsize
The length of one element in bytes.
- nbytes
ndim
The number of array dimensions.
- newbyteorder
- ptp
shape
Tuple of array dimensions.
size
The number of elements in the gentype.
strides
Tuple of bytes steps in each dimension.
Methods
trace
program/module to trace Python program or function execution
to_device
tobytes
- blosc2.DEFAULT_FLOAT¶
Default real floating dtype.
- Attributes:
T
Scalar attribute identical to the corresponding array attribute.
base
Scalar attribute identical to the corresponding array attribute.
data
Pointer to start of data.
- device
dtype
Get array data-descriptor.
flags
The integer value of flags.
flat
A 1-D view of the scalar.
- itemset
itemsize
The length of one element in bytes.
- nbytes
ndim
The number of array dimensions.
- newbyteorder
- ptp
shape
Tuple of array dimensions.
size
The number of elements in the gentype.
strides
Tuple of bytes steps in each dimension.
Methods
trace
program/module to trace Python program or function execution
to_device
tobytes
- blosc2.DEFAULT_INDEX¶
Default indexing dtype.
- Attributes:
T
Scalar attribute identical to the corresponding array attribute.
base
Scalar attribute identical to the corresponding array attribute.
data
Pointer to start of data.
denominator
denominator of value (1)
- device
dtype
Get array data-descriptor.
flags
The integer value of flags.
flat
A 1-D view of the scalar.
- itemset
itemsize
The length of one element in bytes.
- nbytes
ndim
The number of array dimensions.
- newbyteorder
numerator
numerator of value (the value itself)
- ptp
shape
Tuple of array dimensions.
size
The number of elements in the gentype.
strides
Tuple of bytes steps in each dimension.
Methods
trace
program/module to trace Python program or function execution
to_device
tobytes
- blosc2.DEFAULT_INT¶
Default integer dtype.
- Attributes:
T
Scalar attribute identical to the corresponding array attribute.
base
Scalar attribute identical to the corresponding array attribute.
data
Pointer to start of data.
denominator
denominator of value (1)
- device
dtype
Get array data-descriptor.
flags
The integer value of flags.
flat
A 1-D view of the scalar.
- itemset
itemsize
The length of one element in bytes.
- nbytes
ndim
The number of array dimensions.
- newbyteorder
numerator
numerator of value (the value itself)
- ptp
shape
Tuple of array dimensions.
size
The number of elements in the gentype.
strides
Tuple of bytes steps in each dimension.
Methods
trace
program/module to trace Python program or function execution
to_device
tobytes
- class blosc2.Operand[source]¶
Base class for all operands in expressions.
- Attributes:
- device
Methods
item
()Copy an element of an array to a standard Python scalar and return it.
to_device
- class blosc2.ProxyNDField(proxy: Proxy, field: str)[source]¶
- Attributes:
- device
Methods
item
()Copy an element of an array to a standard Python scalar and return it.
to_device
- class blosc2.finfo(dtype)¶
Machine limits for floating point types.
- bits¶
The number of bits occupied by the type.
- Type:
int
- dtype¶
Returns the dtype for which finfo returns information. For complex input, the returned dtype is the associated
float*
dtype for its real and complex components.- Type:
dtype
- eps¶
The difference between 1.0 and the next smallest representable float larger than 1.0. For example, for 64-bit binary floats in the IEEE-754 standard,
eps = 2**-52
, approximately 2.22e-16.- Type:
float
- epsneg¶
The difference between 1.0 and the next smallest representable float less than 1.0. For example, for 64-bit binary floats in the IEEE-754 standard,
epsneg = 2**-53
, approximately 1.11e-16.- Type:
float
- iexp¶
The number of bits in the exponent portion of the floating point representation.
- Type:
int
- machep¶
The exponent that yields eps.
- Type:
int
- max¶
The largest representable number.
- Type:
floating point number of the appropriate type
- maxexp¶
The smallest positive power of the base (2) that causes overflow.
- Type:
int
- min¶
The smallest representable number, typically
-max
.- Type:
floating point number of the appropriate type
- minexp¶
The most negative power of the base (2) consistent with there being no leading 0’s in the mantissa.
- Type:
int
- negep¶
The exponent that yields epsneg.
- Type:
int
- nexp¶
The number of bits in the exponent including its sign and bias.
- Type:
int
- nmant¶
The number of bits in the mantissa.
- Type:
int
- precision¶
The approximate number of decimal digits to which this kind of float is precise.
- Type:
int
- resolution¶
The approximate decimal resolution of this type, i.e.,
10**-precision
.- Type:
floating point number of the appropriate type
- tiny¶
An alias for smallest_normal, kept for backwards compatibility.
- Type:
float
- smallest_normal¶
The smallest positive floating point number with 1 as leading bit in the mantissa following IEEE-754 (see Notes).
- Type:
float
- smallest_subnormal¶
The smallest positive floating point number with 0 as leading bit in the mantissa following IEEE-754.
- Type:
float
- Parameters:
dtype¶ (float, dtype, or instance) – Kind of floating point or complex floating point data-type about which to get information.
See also
Notes
For developers of NumPy: do not instantiate this at the module level. The initial calculation of these parameters is expensive and negatively impacts import times. These objects are cached, so calling
finfo()
repeatedly inside your functions is not a problem.Note that
smallest_normal
is not actually the smallest positive representable value in a NumPy floating point type. As in the IEEE-754 standard [1], NumPy floating point types make use of subnormal numbers to fill the gap between 0 andsmallest_normal
. However, subnormal numbers may have significantly reduced precision [2].This function can also be used for complex data types as well. If used, the output will be the same as the corresponding real float type (e.g. numpy.finfo(numpy.csingle) is the same as numpy.finfo(numpy.single)). However, the output is true for the real and imaginary components.
References
[1]IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008, pp.1-70, 2008, https://doi.org/10.1109/IEEESTD.2008.4610935
[2]Wikipedia, “Denormal Numbers”, https://en.wikipedia.org/wiki/Denormal_number
Examples
>>> import numpy as np >>> np.finfo(np.float64).dtype dtype('float64') >>> np.finfo(np.complex64).dtype dtype('float32')
- Attributes:
smallest_normal
Return the value for the smallest normal.
tiny
Return the value for tiny, alias of smallest_normal.
- property smallest_normal¶
Return the value for the smallest normal.
- Returns:
smallest_normal – Value for the smallest normal.
- Return type:
float
- Warns:
UserWarning – If the calculated value for the smallest normal is requested for double-double.
- property tiny¶
Return the value for tiny, alias of smallest_normal.
- Returns:
tiny – Value for the smallest normal, alias of smallest_normal.
- Return type:
float
- Warns:
UserWarning – If the calculated value for the smallest normal is requested for double-double.
- class blosc2.iinfo(type)¶
Machine limits for integer types.
- bits¶
The number of bits occupied by the type.
- Type:
int
- dtype¶
Returns the dtype for which iinfo returns information.
- Type:
dtype
- min¶
The smallest integer expressible by the type.
- Type:
int
- max¶
The largest integer expressible by the type.
- Type:
int
- Parameters:
int_type¶ (integer type, dtype, or instance) – The kind of integer data type to get information about.
See also
finfo
The equivalent for floating point data types.
Examples
With types:
>>> import numpy as np >>> ii16 = np.iinfo(np.int16) >>> ii16.min -32768 >>> ii16.max 32767 >>> ii32 = np.iinfo(np.int32) >>> ii32.min -2147483648 >>> ii32.max 2147483647
With instances:
>>> ii32 = np.iinfo(np.int32(10)) >>> ii32.min -2147483648 >>> ii32.max 2147483647