
Compress Me, Stupid!

Valentin Haenel

Freelance Consultant and Software Developer
@esc___

23 July 2014 - EuroPython Berlin (EP14)

Version: 2014-EuroPython https://github.com/esc/compress-me-stupid
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

https://github.com/esc/compress-me-stupid


A Historical Perspective



The Memory Hierarchy – Up to end of 80’s



The Memory Hierarchy – 90’s and 2000’s



The Memory Hierarchy – 2010’s



Starving CPUs

The Status of CPU Starvation in 2014:

I Memory latency is much slower (between 100x and 500x) than
processors.

I Memory bandwidth is improving at a better rate than memory
latency, but it is also slower than processors (between 30x and
100x).

I Net effect: CPUs are often waiting for data



It’s the memory, Stupid

Problem: It’s the memory, Stupid! [1]

Solution: Compress me, Stupid!

[1] R. Sites. It’s the memory, stupid! MicroprocessorReport,
10(10),1996



Blosc



Blosc

I Designed for: in-memory compression
I Addresses: the starving CPU Problem
I (In fact, it also works well in general purpose scenarios)
I Written in: C



Faster-than-memcpy

0 1 2 3 4 5 6 7 8
Compresssion ratio

0

2000

4000

6000

8000

10000

12000

14000
S
p
e
e
d
 (

M
B

/s
) memcpy (write to memory)

Compression speed (256.0 MB, 8 bytes, 19 bits)

1 threads
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads
9 threads
10 threads
11 threads
12 threads



Faster-than-memcpy

0 1 2 3 4 5 6 7 8
Compresssion ratio

0

5000

10000

15000

20000

25000

30000

35000
S
p
e
e
d
 (

M
B

/s
)

memcpy (read from memory)

Decompression speed (256.0 MB, 8 bytes, 19 bits)

1 threads
2 threads
3 threads
4 threads
5 threads
6 threads
7 threads
8 threads
9 threads
10 threads
11 threads
12 threads



Blosc is a Metacodec

I Blosc does not actually compress anything
I Cutting data into blocks
I Application of filters
I Management of threads

I Can use ‘real’ codecs under the hood.
I Filters and codecs are applied to each block (blocking)
I Thread-level parallelism on blocks



Shuffle Filter

I Reorganization of bytes within a block
I Reorder by byte significance



Shuffle Filter Example – Setup

Imagine we have the following array as uint64 (8 byte, unsigned
integer):

[0, 1, 2, 3]

Reinterpret this as uint8:

[0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0,
2, 0, 0, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 0, 0]



Shuffle Filter Example – Application

What the shuffle filter does is:

[0, 1, 2, 3, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]

Which, reinterpreted as uint64 is:

[50462976, 0, 0, 0]



Shuffle Filter Benefits

I Works well for multibyte data with small differences
I e.g. Timeseries

I Exploit similarity between elements
I Lump together bytes that are alike
I Create longer streams of similar bytes
I Better for compression
I Shuffle filter implemented using SSE2 instructions



Shuffle Fail

It does not work well on all datasets, observe:

[18446744073709551615, 0, 0, 0]

Or, as uint8:

[255, 255, 255, 255, 255, 255, 255, 255,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]



Shuffle Fail in Action

When shuffled yields:

[1095216660735, 1095216660735,
1095216660735, 1095216660735]

Or, as uint8:

[255, 0, 0, 0, 255, 0, 0, 0,
255, 0, 0, 0, 255, 0, 0, 0,
255, 0, 0, 0, 255, 0, 0, 0,
255, 0, 0, 0, 255, 0, 0, 0]



OK, so what else is under the hood?

I By default it uses Blosclz – derived from Fastlz
I Alternative codecs

I LZ4 / LZ4HC
I Snappy
I Zlib

Support for other codecs (LZO, LZF, QuickLZ, LZMA) possible,
but needs to be implemented.



Blosc + X

So. . . using Blosc + X can yield higher compression ratios using
the shuffle filter and faster compression/decompression time
using multithreading.

That’s pretty neat!



Python-Blosc



Python API

I It’s a codec
I Naturally we have a compress/decompress pair

I Can operate on byte strings or pointers (encoded as integers)
I compress vs. compress_ptr

I Tutorials
I http://python-blosc.blosc.org/tutorial.html

I API documentation
I http://python-blosc.blosc.org/

I Implemented as a C-extension using the Python-C-API

http://python-blosc.blosc.org/tutorial.html
http://python-blosc.blosc.org/


Example – Setup

>>> import numpy as np
>>> import blosc
>>> import zlib

>>> bytes_array = np.linspace(0, 100, 1e7).tostring()
>>> len(bytes_array)
80000000



Example – Compress

>>> %timeit zpacked = zlib.compress(bytes_array, 9)
1 loops, best of 3: 14.7 s per loop

>>> %timeit bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9)
1 loops, best of 3: 317 ms per loop



Example – Ratio
>>> zpacked = zlib.compress(bytes_array, 9)
>>> len(zpacked)
52945925

>>> bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9)
>>> len(bpacked)
1011304

>>> len(bytes_array) / len(zpacked)
1.5109755849954458
>>> len(bytes_array) / len(bzpacked)
79.10578817052044
>>> len(zpacked) / len(bzpacked)
52.35411409427828



Example – Decompress

>>> %timeit zupacked = zlib.decompress(zpacked)
1 loops, best of 3: 388 ms per loop

>>> %timeit bupacked = blosc.decompress(bzpacked)
10 loops, best of 3: 76.2 ms per loop



Example – Demystified

I Blosc works really well for the linspace dataset
I Shuffle filter and multithreading bring benefits



Example – Speed Demystified

I Use a single thread and deactivate the shuffle filter

>>> blosc.set_nthreads(1)
>>> %timeit bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9,
... shuffle=False)
1 loops, best of 3: 12.9 s per loop



Example – Ratio Demystified

>>> bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9,
... shuffle=False)
>>> len(zpacked) / len(bzpacked)
0.9996947439311876



So, What about other Codecs? – Compress

I Zlib implements a comparatively slow algorithm (DEFLATE),
let’s try LZ4

>>> %timeit bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9)
1 loops, best of 3: 329 ms per loop

>>> %timeit blpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’lz4’,
... clevel=9)
10 loops, best of 3: 20.9 ms per loop



So, What about other Codecs? – Ratio

I Although this speed increase comes at the cost of compression
ratio

>>> bzpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’zlib’,
... clevel=9)
>>> blpacked = blosc.compress(bytes_array,
... typesize=8,
... cname=’lz4’,
... clevel=9)
>>> len(bzpacked) / len(blpacked)
0.172963927766



So, What about other Codecs? – Decompress

>>> %timeit bzupacked = blosc.decompress(bzpacked)
10 loops, best of 3: 74.3 ms per loop

>>> %timeit blupacked = blosc.decompress(blpacked)
10 loops, best of 3: 25.3 ms per loop



C-extension Notes

I Uses _PyBytesResize to resize a string after compressing into
it

I Release the GIL before compression and decompression.



Installation and Compilation



Installation via Package – PyPi/pip

Using pip (inside a virtualenv):

$ pip install blosc

Provided you have a C++ (not just C) compiler..



Installation via Package – binstar/conda

Using conda:

$ conda install -c https://conda.binstar.org/esc python-blosc

Experimental, Numpy 1.8 / Python 2.7 only..



Compilation / Packaging
Blosc is a metacodec and as such has various dependencies



Compilation / Packaging – Flexibility is Everything

I Blosc uses CMake and ships with all codec sources
I Try to link against existing codec library
I If not found, use shipped sources

I Python-Blosc comes with Blosc sources
I Compile everything into Python module
I Or link against Blosc library

I Should be beneficial for packagers



Outro



Other Projects that use Blosc

PyTables HDF Library
Bloscpack Simple file-format and Python implementation

bcolz In-memory and out-of-core compressed array-like
structure



The Future

I What might be coming. . .
I More codecs
I Alternative filters
I Auto-tune at runtime
I Multi-shuffle
I A Go implementation

I How can I help?
I Run the benchmarks on your hardware, report the results
I http://blosc.org/synthetic-benchmarks.html
I Incorporate Blosc into your application

http://blosc.org/synthetic-benchmarks.html


Advertisment

I EuroPython
I Francecs Alted - Out of Core Columnar Datasets - Friday 11:00

C01

I PyData Berlin
I Francecs Alted - Data Oriented Programming - Saturday 13:30

B05
I Valentin Haenel - Fast Serialization of Numpy Arrays with

Bloscpack - Sunday 11:00 am B05



Getting In Touch

I Main website: http://blosc.org
I Github organization: http://github.com/Blosc
I python-bloc: http://github.com/Blosc/python-blosc
I Google group:

https://groups.google.com/forum/#!forum/blosc
I This talk: https://github.com/esc/compress-me-stupid

http://blosc.org
http://github.com/Blosc
http://github.com/Blosc/python-blosc
https://groups.google.com/forum/
https://github.com/esc/compress-me-stupid

	A Historical Perspective
	Blosc
	Python-Blosc
	Installation and Compilation
	Outro

