
PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023) 1

Using Blosc2 NDim As A Fast Explorer Of The Milky
Way (Or Any Other NDim Dataset)

Project Blosc‡†, Francesc Alted‡†∗, Marta Iborra‡†, Oscar Guiñón‡†, David Ibáñez‡, Sergio Barrachina§

✦

Abstract—Large multidimensional datasets are widely used in various engi-
neering and scientific applications. Prompt access to the subsets of these
datasets is crucial for an efficient exploration experience. To facilitate this, we
have added support for large dimensional datasets to Blosc2, a compression
and format library. The extension enables effective support for large multidimen-
sional datasets, with a special encoding of zeros that allows for efficient handling
of sparse datasets. Additionally, the new two-level data partition used in Blosc2
reduces the need for decompressing unnecessary data, further accelerating
slicing speed.

The Blosc2 NDim layer enables the creation and reading of n-dimensional
datasets in an extremely efficient manner. This is due to a completely general
n-dim 2-level partitioning, which allows for slicing and dicing of arbitrary large
(and compressed) data in a more fine-grained way. Having a second partition
provides a better flexibility to fit the different partitions at the different CPU cache
levels, making compression even more efficient.

Additionally, Blosc2 can make use of Btune, a library that automatically finds
the optimal combination of compression parameters to suit user needs. Btune
employs various techniques, such as a genetic algorithm and a neural network
model, to discover the best parameters for a given dataset much more quickly.
This approach is a significant improvement over the traditional trial-and-error
method, which can take hours or even days to find the best parameters.

As an example, we will demonstrate how Blosc2 NDim enables fast explo-
ration of the Milky Way using the Gaia DR3 dataset.

Index Terms—explore datasets, n-dimensional datasets, Gaia DR3, Milky Way,
Blosc2, compression

Introduction

The exploration of datasets that are high dimensional is a common
practice in various fields of science. However, exploring such
n-dimensional datasets is challenging when the memory size of
the dataset is extremely large. This can slow down the data
exploration process significantly. In this paper, we demonstrate
how Blosc2 NDim can be used to accelerate the exploration of
huge n-dimensional datasets.

Blosc is a high-performance compressor optimized for binary
data. Its design enables faster transmission of data to the processor
cache than the traditional, non-compressed, direct memory fetch
approach using an OS call to memcpy(). This can be helpful not
only in reducing the size of large datasets on-disk and in-memory,

† These authors contributed equally.
‡ Project Blosc
* Corresponding author: francesc@blosc.org
§ Universitat Jaume I

Copyright © 2023 Project Blosc et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Fig. 1: Speed for summing up a vector of real float32 data (me-
teorological precipitation) using a variety of codecs provided by
Blosc2. Note that the maximum speed is achieved when utilizing the
maximum number of (logical) threads available on the computer (28),
where different codecs are allowing faster computation than using
uncompressed data. Benchmark performed on a Intel i9-10940X CPU,
with 14 physical cores. More info at [2].

but also in accelerating memory-bound computations, which are
typical in big data processing.

Blosc uses the blocking technique [1] to minimize activ-
ity on the memory bus. The technique divides datasets into
blocks small enough to fit in the caches of modern processors,
where compression/decompression is performed. Blosc also takes
advantage of single-instruction multiple-data streams (SIMD),
like SSE2, AVX2, NEON. . . and multi-threading capabilities
in modern multi-core processors to maximize the compres-
sion/decompression speed.

In addition, using the Blosc compressed data can accelerate
memory-bound computations when enough cores are dedicated to
the task. Figure 1 provides a real example of this.

Blosc2 is the latest version of the Blosc 1.x series, which
is used in many important libraries, such as HDF5 [3], Zarr
[4], and PyTables [5]. Its NDim feature excels at reading multi-
dimensional slices, thanks to an innovative pineapple-style par-
titioning technique [6]. This enables fast exploration of general
n-dimensional datasets, including the 3D Gaia array.

mailto:francesc@blosc.org

2 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 2: Gaia DR3 dataset as a 3D array (Gaia collaboration).

The Milky Way dataset

Figure 2 shows a 3D view of the Milky Way different type of stars.
Each point is a star, and the color of each point represents the star’s
magnitude, with the brightest stars appearing as the reddest points.
Although this view provides a unique perspective, the dimensions
of the cube are not enough to fully capture the spiral arms of the
Milky Way.

One advantage of using a 3D array is the ability to utilize
Blosc2 NDim’s powerful slicing capabilities for quickly exploring
parts of the dataset. For example, we could search for star clusters
by extracting small cubes as NumPy arrays, and counting the
number of stars in each one. A cube containing an abnormally
high number of stars would be a candidate for a cluster. We could
also extract a thin 3D slice of the cube and project it as a 2D image,
where the pixels colors represent the magnitude of the shown stars.
This could be used to generate a cinematic view of a journey over
different trajectories in the Milky Way.

For getting the coordinates of the stars in the Milky Way,
we will be using the Gaia DR3 dataset [7], a catalog containing
information on 1.7 billion stars in our galaxy. For this work, we
extracted the 3D coordinates of 1.4 billion stars (those with non-
null parallax values). When stored as a binary table, the dataset is
22 GB in size (uncompressed).

We converted the tabular dataset into a sphere with a radius of
10,000 light years and framed it into a 3D array of shape (20,000,
20,000, 20,000). Each cell in the array represents a cube of 1 light
year per side and contains the number of stars within it. Given
that the average distance between stars in the Milky Way is about
5 light years, very few cells will contain more than one star (e.g.
the maximum of stars in a single cell in our sphere is 6). This 3D
array contains 0.5 billion stars, which is a significant portion of
the Gaia catalog.

The number of stars is stored as a uint8, resulting in a total
dataset size of 7.3 TB. However, compression can greatly reduce
its size to 2.2 GB since the 3D array is very sparse, and the
Zstandard codec [8] is used. Blosc2 can compress the zeroed parts
almost entirely thanks to a specific algorithm to detect zeros early
in the compression pipeline and encoding them efficiently.

In addition, we store other data about the stars in a separate
table indexed with the position of each star (using PyTables). For
demonstration purposes, we store the distance from Sun, radial
velocity, effective temperature, and G-band magnitude using a
float32 for each field. The size of the table is 10 GB uncompressed,
but it can be compressed to 4.8 GB. Adding another 1.0 GB for
the index brings the total size to 5.8 GB. Therefore, the 3D array

Fig. 3: Blosc2 NDim 2-level partitioning.

Fig. 4: Blosc2 NDim 2-level partitioning is flexible. The dimensions
of both partitions can be specified in any arbitrary way that fits the
expected read access patterns.

is 2.2 GB, and the table with the additional information and its
index are 5.8 GB, making a total of 8.0 GB. This comfortably fits
within the storage capacity of any modern laptop.

Blosc2 NDim

In the plain Blosc and Blosc2 libraries, there are two levels of par-
titioning: the block and the chunk. The block is the smallest unit
of data that can be compressed and decompressed independently.
The chunk is a group of blocks that are compressed together. The
chunk and block sizes are parameters that can be tuned to fit the
different cache levels in modern CPUs. For optimal performance,
it is recommended that the block size should fit in the L1 or
L2 CPU cache, minimizing contention between worker threads
during compression/decompression. The chunk size, on the other
hand, should fit in the L3 CPU cache, in order to minimize data
movement to RAM and speed up decompression.

With Blosc2 NDim, we are taking this feature a step further
and both partitions, known as chunks and blocks, are gaining
multidimensional capabilities. This means that one can split a
dataset (called a "super-chunk" in Blosc2 terminology) into n-
dimensional cubes and sub-cubes. Refer to Figures 3 and 4 to
learn more about how this works and how to set it up.

With these finer-grained cubes, arbitrary n-dimensional slices
can be retrieved faster. This is because not all the data necessary
for the coarser-grained partition has to be decompressed, as is
typically required in other libraries (see Figure 5).

For example, for a 4-d array with a shape of (50, 100, 300,
250) with float64 items, we can choose a chunk with shape (10,
25, 50, 50) and a block with shape (3, 5, 10, 20) which makes
for about 5 MB and 23 KB respectively. This way, a chunk fits

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 3

Fig. 5: Blosc2 NDim can decompress data faster by using double
partitioning, which allows for higher data selectivity. This means that
less data compression/decompression is required in general.

Fig. 6: Speed comparison for reading partial n-dimensional slices
of a 4D dataset. The legends labeled "DIM N" refer to slices taken
orthogonally to each dimension. The sizes for the two partitions have
been chosen such that the first partition fits comfortably in the L3
cache of the CPU (Intel i9 13900K), and the second partition fits in
the L1 cache of the CPU. [6].

comfortably on a L3 cache in most of modern CPUs, and a block
in a L1 cache (we are tuning for speed here). See Figure 6 for a
speed comparison with other libraries supporting just one single
n-dimensional partition.

Finally, Blosc2 NDim supports all data types in NumPy.
This means that, in addition to the typical data types like
signed/unsigned int, single and double-precision floats, bools or
strings, it can also store datetimes (including units), and arbitrarily
nested heterogeneous types. This allows to create multidimen-
sional tables and more.

Support for multiple codecs, filters, and other compression
features

Blosc2 is not only a compression library, but also a framework for
creating efficient compression pipelines. A compression pipeline
is composed of a sequence of filters, followed by a compression
codec. A filter is a transformation that is applied to the data
before compression, and a codec is a compression algorithm that is
applied to the filtered data. Filters can lead to better compression
ratios and improved compression/decompression speeds.

Blosc2 supports a variety of codecs, filters, and other com-
pression features. In particular, it supports the following codecs
out-of-the-box:

Fig. 7: The Blosc2 filter pipeline. During compression, the first
function applied is the prefilter (if any), followed by the filter pipeline
(with a maximum of six filters), and finally, the codec. During
decompression, the order is reversed: first the codec, then the filter
pipeline, and finally the postfilter (if any).

• BloscLZ (fast codec, the default),
• LZ4 (a very fast codec),
• LZ4HC (high compression variant of LZ4),
• Zlib (the Zlib-NG variant of Zlib),
• Zstd (high compression), and
• ZFP (lossy compression for n-dimensional datasets of

floats).

It also supports the following filters out-of-the-box:

• Shuffle (groups equal significant bytes together, useful for
ints/floats),

• Shuffle with bytedelta (same than shuffle, but storing deltas
of consecutive same significant bytes),

• Bitshuffle (groups equal significant bits together, useful for
ints/floats), and

• Truncation (truncates precision, useful for floats; lossy).

Blosc2 utilizes a pipeline architecture that enables the chaining
of different filters [9] followed by a compression codec. Addition-
ally, it allows for pre-filters (user code meant to be executed before
the pipeline) and post-filters (user code meant to be executed after
the pipeline). This architecture is highly flexible and minimizes
data copies between the different steps, making it possible to
create highly efficient pipelines for a variety of use cases. Figure
7 illustrates how this works.

Furthermore, Blosc2 supports user-defined codecs and filters,
allowing one to create their own compression algorithms and use
them within Blosc2 [9]. These user-defined codecs and filters
can also be dynamically loaded [10], registered globally within
Blosc2, and installed via a Python wheel so that they can be used
seamlessly from any Blosc2 application (whether in C, Python, or
any other language that provides a Blosc2 wrapper).

Automatic tuning of compression parameters

Finding the right compression parameters for the data is probably
the most difficult part of using a compression library. Which
combination of code and filters would provide the best com-
pression ratio? Which one would provide the best compres-
sion/decompression speed?

Btune is an AI tool for Blosc2 that automatically finds the
optimal combination of compression parameters to suit user needs.
It uses a neural network trained on representative datasets to be
compressed to predict the best compression parameters based
on the given tradeoff between compression ratio and compres-
sion/decompression speed.

4 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 blosclz-nofilter-5 786.51 106.86 91.04
0.1 blosclz-nofilter-5 786.51 106.86 91.04
0.2 blosclz-nofilter-5 786.51 106.86 91.04
0.3 blosclz-nofilter-5 786.51 106.86 91.04
0.4 blosclz-nofilter-5 786.51 106.86 91.04
0.5 blosclz-nofilter-5 786.51 106.86 91.04
0.6 zstd-nofilter-9 8959.6 8.79 59.13
0.7 zstd-nofilter-9 8959.6 8.79 59.13
0.8 zstd-nofilter-9 8959.6 8.79 59.13
0.9 zstd-bitshuffle-9 10789.6 3.41 12.78
1.0 zstd-bitshuffle-9 10789.6 3.41 12.78

TABLE 1: Btune prediction of the best compression parameters for
decompression speed for the 3D Gaia array, depending on a tradeoff
value between compression ratio and decompression speed. It can
be seen that BloscLZ with compression level 5 is the most predicted
category when decompression speed is preferred, whereas Zstd with
compression level 9 + BitShuffle is the most predicted one when the
specified tradeoff is towards optimizing for the compression ratio.
Speeds are in GB/s.

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 blosclz-shuffle-5 2.09 14.47 48.93
0.1 blosclz-shuffle-5 2.09 14.47 48.93
0.2 blosclz-shuffle-5 2.09 14.47 48.93
0.3 blosclz-shuffle-5 2.09 14.47 48.93
0.4 zstd-bytedelta-1 3.30 17.04 21.65
0.5 zstd-bytedelta-1 3.30 17.04 21.65
0.6 zstd-bytedelta-1 3.30 17.04 21.65
0.7 zstd-bytedelta-1 3.30 17.04 21.65
0.8 zstd-bytedelta-1 3.30 17.04 21.65
0.9 zstd-bytedelta-1 3.30 17.04 21.65
1.0 zstd-bytedelta-9 3.31 0.07 11.40

TABLE 2: Btune prediction of the best compression parameters for
decompression speed for another dataset (cancer imaging). It can
be seen that BloscLZ with compression level 5 + Shuffle is the most
predicted category when decompression speed is preferred, whereas
Zstd (either compression level 1 or 9) + Shuffle + ByteDelta is the
most predicted one when the specified tradeoff is towards optimizing
for the compression ratio. Speeds are in GB/s.

For example, Table 1 displays the results for the predicted
compression parameters tuned for decompression speed of the
3D Gaia array. This table can be provided to the Btune plugin
so that it can choose the best tradeoff value for user’s needs (0
means favoring speed only, and 1 means favoring compression
ratio only).

Of course, results will be different for another dataset. For
example, Table 2 displays the results for the predicted compression
parameters tuned for decompression speed for a dataset coming
from cancer imaging. Curiously, in this case fast decompression
does not necessarily imply fast compression.

On the other hand, there are also situations where data have
to be compressed at a high speed (e.g. consolidating data from
high bandwidth detectors). Table 3 shows an example of predicted
compression parameter tuned this time for compression speed and
ratio on yet another dataset for this scenario (in this case, images
coming from synchrotron facilities).

Tradeoff Most predicted Cratio Cspeed Dspeed

0.0 lz4-bitshuffle-5 3.41 21.78 32.0
0.1 lz4-bitshuffle-5 3.41 21.78 32.0
0.2 lz4-bitshuffle-5 3.41 21.78 32.0
0.3 lz4-bitshuffle-5 3.41 21.78 32.0
0.4 lz4-bitshuffle-5 3.41 21.78 32.0
0.5 lz4-bitshuffle-5 3.41 21.78 32.0
0.6 lz4-bitshuffle-5 3.41 21.78 32.0
0.7 lz4-bitshuffle-5 3.41 21.78 32.0
0.8 zstd-bytedelta-1 3.98 9.41 18.8
0.9 zstd-bytedelta-1 3.98 9.41 18.8
1.0 zstd-bytedelta-9 4.06 0.15 14.1

TABLE 3: Btune prediction of the best compression parameters for
compression speed (synchrotron imaging). It can be seen that LZ4 with
compression level 5 + Bitshuffle is the most predicted category when
compression speed is preferred, whereas Zstd (either compression
level 1 or 9) + Shuffle + ByteDelta is the most predicted one when the
specified tradeoff is leveraged towards the compression ratio. Speeds
are in GB/s.

Fig. 8: Speed of obtaining multiple multidimensional slices of the
Gaia dataset along different axes, for different codecs, filters and
different number of threads. The speed is measured in GB/s, so a
higher value is better.

After training the neural network, the Btune plugin can auto-
matically tune the compression parameters for a given dataset.
During inference, the user can set the preferred tradeoff by
setting the BTUNE_TRADEOFF environment variable to a floating
point value between 0 and 1. A value of 0 favors speed only,
while a value of 1 favors compression ratio only. This setting
automatically selects the compression parameters most suitable to
the current data chunk whenever a new Blosc2 data container is
being created.

Results on the Gaia dataset

We will use the training results above to compress the big 3D
Gaia array so that it can be explored more quickly. Figure 8
displays the speed that can be achieved when getting multiple
multidimensional slices of the dataset along different axes, using
the most efficient codecs and filters for various tradeoffs.

These results indicate that the fastest compression is achieved
with BloscLZ (compression level 5, no filters), closely followed by
Zstd (compression level 9, no filters), exactly as the neural network
model predicted. Also, note how the fastest decompression codecs,
BloscLZ and also Zstd, are not affected very much by the number
of threads used, which means that they are not CPU-bound, so

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 5

Fig. 9: Slicing a section of the Gaia dataset with BloscLZ using
different libraries. Note how using one single thread is still quite
effective for Blosc2 NDim and BloscLZ.

Fig. 10: Compressing the Gaia dataset with BloscLZ and Zstd using
different libraries. Blosc2 provides significantly better compression
ratios than using Blosc1 . Also, note how Zstd compresses much better
than BloscLZ.

small computers or laptops with low core counts will be able to
reach good speeds.

Now, let’s compare the figures above with other libraries that
can handle multidimensional data. Figure 9 shows the slicing
speed of the 3D array when applying BloscLZ, the best predicted
codec for speed, and we compare that speed against other libraries
using the same codec but with the previous Blosc1 generation
(Zarr and h5py), and also against Blosc2 via the hdf5plugin [11]
and h5py. Results show that the data can be explored significantly
faster using Blosc2 NDim with the BloscLZ codec. It is also
interesting to note that the speed of Blosc2 NDim with BloscLZ
is not much affected by the number of threads used, which is
a welcome surprise, and probably an indication that the internal
zero-suppression mechanism inside Blosc2 works efficiently with-
out the need of multi-threading.

Regarding compression ratio, Figure 10 shows the results of
compressing the Gaia dataset with Blosc2 NDim with BloscLZ
and Zstd, and we compare that ratio against other libraries using
the same codec but with the previous Blosc1 generation (Zarr
and h5py), and also against Blosc2 via the hdf5plugin and h5py.
Results show that the data can be compressed significantly better
using Blosc2. This is because Blosc2 comes with a new and
powerful zero-detection mechanism that is able to efficiently
handle and compress the many zeros that are present in the Gaia
dataset.

Ingesting and processing data of Gaia

The raw data of Gaia is stored in CSV files. The coordinates
are stored in the gaia_source directory (http://cdn.gea.esac.esa.int/
Gaia/gdr3/gaia_source/). These can be easily parsed and ingested
as Blosc2 files with the following code:
def load_rawdata(out="gaia.b2nd"):

dtype = {"ra": np.float32,
"dec": np.float32,
"parallax": np.float32}

barr = None
for file in glob.glob("gaia-source/*.csv*"):

Load raw data
df = pd.read_csv(

file,
usecols=["ra", "dec", "parallax"],
dtype=dtype, comment='#')

Convert to numpy array and remove NaNs
arr = df.to_numpy()
arr = arr[~np.isnan(arr[:, 2])]
if barr is None:

Create a new Blosc2 file
barr = blosc2.asarray(

arr,
chunks=(2**20, 3),
urlpath=out,
mode="w")

else:
Append to existing Blosc2 file
barr.resize(

(barr.shape[0] + arr.shape[0], 3))
barr[-arr.shape[0]:] = arr

return barr

Once we have the raw data in a Blosc2 container, we can select
the stars in a radius of 10 thousand light years using this function:
def convert_select_data(fin="gaia.b2nd",

fout="gaia-ly.b2nd"):
barr = blosc2.open(fin)
ra = barr[:, 0]
dec = barr[:, 1]
parallax = barr[:, 2]
1 parsec = 3.26 light years
ly = ne.evaluate("3260 / parallax")
Remove ly < 0 and > 10_000
valid_ly = ne.evaluate(

"(ly > 0) & (ly < 10_000)")
ra = ra[valid_ly]
dec = dec[valid_ly]
ly = ly[valid_ly]
Cartesian x, y, z from spherical ra, dec, ly
x = ne.evaluate("ly * cos(ra) * cos(dec)")
y = ne.evaluate("ly * sin(ra) * cos(dec)")
z = ne.evaluate("ly * sin(dec)")
Save to a new Blosc2 file
out = blosc2.zeros(mode="w", shape=(3, len(x)),

dtype=x.dtype, urlpath=fout)
out[0, :] = x
out[1, :] = y
out[2, :] = z
return out

Finally, we can compute the density of stars in a 3D grid with this
script:
R = 1 # resolution of the 3D cells in ly
LY_RADIUS = 10_000 # radius of the sphere in ly
CUBE_SIDE = (2 * LY_RADIUS) // R
MAX_STARS = 1000_000_000 # max number of stars to load

b = blosc2.open("gaia-ly.b2nd")
x = b[0, :MAX_STARS]
y = b[1, :MAX_STARS]
z = b[2, :MAX_STARS]

Create 3d array.
Be sure to have enough swap memory (around 8 TB!)

http://cdn.gea.esac.esa.int/Gaia/gdr3/gaia_source/
http://cdn.gea.esac.esa.int/Gaia/gdr3/gaia_source/

6 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Fig. 11: Stars in the vicinity of our Sun (cube of 50 light years). Each
point represents a star, and its size represents the number of stars in
that location (a cube of 1 x 1 x 1 light year). The maximum amount
of stars in a single location for this view is 3 (triple star systems are
common).

a3d = np.zeros((CUBE_SIDE, CUBE_SIDE, CUBE_SIDE),
dtype=np.float32)

for i, coords in enumerate(zip(x, y, z)):
x_, y_, z_ = coords
a3d[(np.floor(x_) + LY_RADIUS) // R,

(np.floor(y_) + LY_RADIUS) // R,
(np.floor(z_) + LY_RADIUS) // R] += 1

Save 3d array as Blosc2 NDim file
blosc2.asarray(a3d,

urlpath="gaia-3d.b2nd", mode="w",
chunks=(250, 250, 250),
blocks=None,
)

With that, we have a 3D array of shape 20,000 x 20,000 x 20,000
with the number of stars with a 1 light year resolution. We can
visualize the vicinity of our Sun with Plotly [12] making use of
the following code:

import blosc2
import numpy as np
import plotly.express as px

nstars_path = '$HOME/Gaia/gaia-3d-windows-int8.b2nd'
b3d = blosc2.open(nstars_path)
data = b3d[9_975:10_025, 9_975:10_025, 9_975:10_025]
idx = np.indices(data.shape)
fig = px.scatter_3d(x=idx[0, :, :, :].flatten(),

y=idx[1, :, :, :].flatten(),
z=idx[2, :, :, :].flatten(),
size=data[...].flatten())

fig.show()

Figure 11 displays an interactive 3D view of the stars within
a 50 x 50 x 50 light-year cube centered around our Sun. This
visualization was generated using the code above.

In [13] you can find the final version of the scripts above,
including optimized versions that do not require a machine with
more than 32 GB of virtual memory to run.

Conclusions

Working with large, multi-dimensional data cubes can be challeng-
ing due to the costly data handling involved. In this document,
we demonstrate how the two-partition feature in Blosc2 NDim
can help reduce the amount of data movement required when
retrieving thin slices of large datasets. Additionally, this feature
provides a foundation for leveraging cache hierarchies in modern
CPUs.

Blosc2 supports a variety of compression codecs and filters,
making it easier to select the most appropriate ones for the dataset
being explored. It also supports storage in either memory or
on disk, which is crucial for large datasets. Another important
feature is the ability to store data in a container format that
can be easily shared across different programming languages.
Furthermore, Blosc2 has special support for sparse datasets, which
greatly improves the compression ratio in this scenario.

We have also shown how the Btune plugin can be used to
automatically tune the compression parameters for a given dataset.
This is especially useful when we want to compress data efficiently
for a tradeoff between compression or decompression speed and
compression ratio, but we do not know the best compression
parameters beforehand.

In conclusion, we have shown how to utilize the Blosc2 library
for storing and processing the Gaia dataset. This dataset serves as
a prime example of a large, multi-dimensional dataset that can be
efficiently stored and processed using Blosc2 NDim.

Acknowledgments

Jordi Portell, member of the Gaia Collaboration, has been very
helpful in answering many questions about the Gaia dataset, and
has also proposed possible explorations of it.

NumFOCUS, a non-profit organization with a mission to
promote open practices in research, data, and scientific computing.
They have provided steady funds to the Blosc Development Team
over the past years.

Huawei, a high-tech company that made a significant and
selfless donation to the Blosc project.

Sergio Barrachina, associate professor at University Jaume I,
has provided many advice and code during the development of the
Btune project.

This work has made use of data from the European
Space Agency (ESA) mission Gaia (https://www.cosmos.esa.
int/gaia), processed by the Gaia Data Processing and Anal-
ysis Consortium DPAC (https://www.cosmos.esa.int/web/gaia/
dpac/consortium). Funding for the DPAC has been provided by
national institutions, in particular the institutions participating in
the Gaia Multilateral Agreement.

REFERENCES

[1] Francesc Alted, “Why Modern CPUs Are Starving and What Can Be
Done About It,” Computing in Science and Engineering, vol. 12, pp.
68–71, 2010, https://doi.org/10.1109/MCSE.2010.51.

[2] ——. (2018) Breaking Down Memory Walls.
Https://www.blosc.org/posts/breaking-memory-walls/.

[3] The HDF Group. (1997-2023) Hierarchical Data Format, version 5.
Https://www.hdfgroup.org/HDF5/.

[4] Zarr Developers. (2017-2023) An implementation of chunked, com-
pressed, N-dimensional arrays for Python. https://doi.org/10.5281/
zenodo.7971911.

[5] PyTables developers. (2002-2023) A Python package to manage ex-
tremely large amounts of data. Http://www.pytables.org.

https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://doi.org/10.1109/MCSE.2010.51
https://doi.org/10.5281/zenodo.7971911
https://doi.org/10.5281/zenodo.7971911

USING BLOSC2 NDIM AS A FAST EXPLORER OF THE MILKY WAY (OR ANY OTHER NDIM DATASET) 7

[6] Francesc Alted and Oscar Guiñón. (2023) Introducing Blosc2 NDim.
Https://www.blosc.org/posts/blosc2-ndim-intro/.

[7] European Space Agency (ESA) and Gaia Data Processing and Analysis
Consortium (DPAC). (2023) Gaia Data Release 3. Documentation release
1.2. Https://gea.esac.esa.int/archive/documentation/GDR3/.

[8] Yann Collet et al. (2023) Zstandard - Fast real-time compression algo-
rithm. Https://github.com/facebook/zstd.

[9] Marta Iborra. (2022) User Defined Pipeline for Python-Blosc2.
Https://www.blosc.org/posts/python-blosc2-pipeline/.

[10] Marta Iborra and Francesc Alted. (2023) Dynamic Plugins in C-Blosc2.
Https://www.blosc.org/posts/dynamic-plugins/.

[11] Silx maintainers. (2023) Set of compression filters for h5py.
Https://github.com/silx-kit/hdf5plugin.

[12] Plotly Technologies Inc. (2015) Collaborative data science. Montreal,
QC. Https://plot.ly.

[13] The Blosc Development Team. (2023) Scripts for "A Fast Explorer Of
The Milky Way" talk. Https://github.com/Blosc/exploring-milky-way.git.

	Introduction
	The Milky Way dataset
	Blosc2 NDim
	Support for multiple codecs, filters, and other compression features
	Automatic tuning of compression parameters
	Results on the Gaia dataset
	Ingesting and processing data of Gaia
	Conclusions
	Acknowledgments
	References

