| ‘.-
® O
CATERVA

A Compressed And Multidimensional Container
For Not So Big Data

@FrancescAlted
Freelancer

Sponsored by N U M F@CUS A Member of the BLQ‘(Family

OPEN CODE = BETTER SCIENCE

HDF5 European Workshop. Grenoble September 18th, 2019

About Me

Physicist by training.

Computer scientist by passion.

Open Source enthusiast by philosophy.
e PyTables (2002 - 2011)

e Blosc (2009 - now)

«

v

The technology platform
to make a difference in
your relationship with
large and complex data

HDF5 +aTwist

ylables

Query time for complex query and 1 Grow (indexed)

PyTables 2.1 CSI nocompr
PyTables 2.1 CSl zlibl
PyTables 2.1 CSl I1zol
PostgreSQL 8.3.1
PyTables 2.1 inkernel Izol
PostgreSQL 8.3.1 not indexed

Indexed
Queries

10* 10° 10° 107 108
Number of hits

OQut-of-core
Expressions

Computing .25:;3 —l—.‘75x2 —1.52—2 polynomial

sl A A pure numpy
¥V ¥V numpy.memmap
® @ tables.Expr (no compr)
4 @ @ tables.Expr (zlib)
- \V4 B B tables.Expr (1zo)
33_ A A tables.Expr (blosc)
()
=
z) C
A o
1t O
A A
e A

8.0 OI.5 1|.0 1|.5 2‘.0 2I.5 3I.0 3I.5 4|.0 4.5
compression ratio

Sizes for index of a 1 Grow column with different optimizations
(PyTables Pro 2.1 beta2 vs PostgreSQL 8.2.6)

I Optlevel 0
[Optlevel 3
sl [Optlevel 6
[Optlevel 9
5 6l 15x lighter
3
()
N
(%]
@
a 4f
2-

0 Original UltraLight Light Medium
column

Full PostgreSQL

What is Caterva?

e |tis an open source C library and a format that allows to
store large multidimensional, chunked, compressed

datasets.

e Data can be stored either in-memory or on-disk, but the
API| to handle both versions is the same.

e Compression is handled transparently for the user by
adopting the Blosc2 library. '

Sponsored by N U M F@CUS @ [©

OPEN CODE = BETTER SCIENCE

Why Another Data
Container?

* Most of the existing data containers supporting on-the-
flight compression are meant for on-disk/cloud data.

e But the memory layer can be seen as storage too, and
there is a need for a container that is optimized for this.

e Caterva is designed from the ground up to use the
memory layer as storage for a compressed data-
container.

Capacity

Accelerating I/0 With
Caterva

Other
Containers
}Caterva

5

Why Another Format?

e Being able to store in an in-memory data container does
not mean that data cannot be persisted. It is critical to
find a way to store and retrieve data efficiently.

* Also, it is Important to adopt open formats for reducing
the maintenance burden and facilitate its adoption more

quickly.

* As we will see soon, Caterva brings an efficient and open
format for persistency. '

Caterva Brings Powerful

Slicing Capabilities

AVAVAVA VAV

VAVAVAVAVAYAS:

Ny o AYAYA\Y;
Vo 2 VAVANAYAN
NN

(e 4 ﬁ&l

3\ / q .
ARTFEENNN

ha—3)

\b/a.ﬂ\. =
AN TR
ViV = VAVANZ AN

PR\

©
C
O
N
C
D
=
O
L
Ao
L
Y
O
-
>
O
N
O
9
»

=
e
-
Q
O
4=
)
2]
e
)
)]
©
e
©
©

Caterva containers or regular
plain buffers (for better

O
fe)
®
)
25
O o
S5 C
s X
O =
“—
S
S &
E 5
%
,%e
S O
=
£ 9
Ie)
O ©
(]

e Resulting slices can be either

interaction with e.g. NumPy).

Ao 2 — —\
-
— l'" - —

/\

T — 2 by A b/MW\\b/‘\

\/\\ /,

//\ /3

\/\)i—=\

-

Accessing Chunked
Datasets

chunked multidimensional

e Those used to manipulate
arrays know how critical

NANNIRTTN
AVAYAYAV/AV WLV

VoV 5 2 AVANVA

AAR KIS
V.V S 2\V/AWA N

K ..l’

- N X\N
\WANN/Z A\ AN /A

A\ SN

AN\

/\ 2 4 venw o, \\ w——- ."l’
S AV AN ==
.....

‘\e...».m....v\\bq@ s AN
‘ =

\ nNol\.—ooﬁ\»JMo..“\\‘Vﬂ iy

o

u\u.i Y. .a.ﬂi&. h‘n\\}oo\c\h.fc “
‘b—‘lﬁ.; n’lﬂ Ny

K%
)
N
n
-
O
e
-+
-
©
O
D
L
e
o)
E=
)]
O
O
L
@

OI

X\ //\ X\ AN
—‘ ‘ »Ill‘ ‘b.,/,-..- - (s

0&»1 A BN

0\, pﬂ.J,«\>,.AM\>,wm§mo.1\§a

wr VA

7 \

You can play with a small, but representative benchmark at:

https://github.com/Blosc/cat4py/blob/master/notebooks/compare getslice.ipynb

https://github.com/Blosc/cat4py/blob/master/notebooks/compare_getslice.ipynb

Performance In-Memory

Creation times (in-memory)

hdf5

zZarr

caterva

B time (sec)

6 8 10

o
N
~

Getslice times (in-memory)

hdf5

zZarr

caterva

B time (sec)

10

o
N
-
(@)]
(0 0]

Caterva is meant to read data from memory very fast!

Performance On-Disk

Creation times (on-disk)

hdf5

Zarr

caterva

El time (sec)

6 8

o
N -
N

Getslice times (on-disk)

10

hdf5

zZarr

caterva

B time (sec)

o
N
I
(o)}

There is still room for optimization when reading from disk...

8

#1include <caterva.h>

int main(){
// Create a context
caterva_ctx_t *ctx = caterva_new_ctx(NULL, NULL, BLOSCZ2_CPARAMS_DEFAULTS, BLOSC2_DPARAMS_DEFAULTS);
ctx->cparams.typesize = sizeof(double);

// Define the partition shape for the first array
1nt8_t ndim = 3;

1nt64_t pshape_[] = {3, 2, 4};

caterva_dims_t pshape = caterva_new_dims(pshape_, ndim);

// Create the first (empty) array
caterva_array_t *catl = caterva_empty_array(ctx, NULL, &pshape);

// Define a buffer shape to fill catl
int64_t shape_[] = {10, 10, 10};

caterva_dims_t shape = caterva_new_dims(shape_, ndim);

// Create a buffer to fill catl
size_t buflsize = 10 * 10 * 10 * sizeof(double);
double *bufl = (double *) malloc(buflsize * sizeof(double));

// Fi1ll catl with the above buffer
caterva_from_buffer(catl, &shape, bufl);

free(bufl);
caterva_free_array(catl);

return 0;

Example of muti-dimensional array creation

// Apply a "get_slice to catl and store it into cat2
int64_t start_[] = {3, 6, 4};

caterva_dims_t start = caterva_new_dims(start_, ndim);
into4_t stop_[] = {4, 9, 8%};

caterva_dims_t stop = caterva_new_dims(stop_, ndim);

int64_t pshape2_[] = {1, 2, 3};
caterva_dims_t pshape2 = caterva_new_dims(pshape2_, ndim);
caterva_array_t *cat2 = caterva_empty_array(ctx, NULL, &pshape2);

caterva_get_slice(cat2, catl, &start, &stop);
caterva_squeeze(cat2);

// Create a buffer to store the cat2 elements
uint64_t buf2size = 1;
caterva_dims_t shape2 = caterva_get_shape(cat2);
for (int j = 0; j < shape2.ndim; ++3j) {
buf2size *= shape2.dims[j];
¥
double *buf2 = (double *) malloc(buf2size * sizeof(double));

// Fill buffer with the cat2 content
caterva_to_buffer(cat2, buf2);

printf("The resulting hyperplane is:\n");
for (int64_t 1 = 0; 1 < shapel.dims[0]; ++1) {
for (intb4_t j = 0; j < shape2.dims[1]; ++3) {
printf("%6.f", buf2[i * cat2->shape[l] + j1);
¥
printf("\n");

Example of getting a slice out of a muti-dimensional array

Brief Comparison Against Well
Known Chunked Containers

Caterva

One-file per Yes No

container? (> 1 container) (1 file per chunk) ves
No
Hierarchical Yes Yes (use the
filesystem)
Mature Yes Yes In process
Yes

In-memory Yes Yes

version? (sequential?) (sparse) (sequential /

sparse)

Blosc?2

* Blosc? is the next generation of the well-known Blosc (aka Blosc1).
* New features:
e Enlargeable 64-bit containers: in-memory or on-disk
* New compression codecs
e New filters
* Metalayers

e User metadata

Decompression speed (multi-threaded Blosc)

61.1X
53.1X

~ Decompression Spee

Blosc(cname="zstd', clevel=5, shuffle=2) —
Blosc(cname="zstd', clevel=1, shuffle=2) —

Blosc(cname="zlib’, clevel=5, shuffle=2) —

Blosc(cname="7zlib’, clevel=1, shuffle=2) —

|l5‘31
- N
b,x
>

41.8X
35.0X

Blosc(cname="lz4hc’, clevel=5, shuffle=2) —

Blosc(cname="Iz4hc’, clevel=1, shuffle=2) —

%

Blosc(cname="1z4', clevel=9, shuffle=2) —

Blosc(cname="Iz4', clevel=5, shuffle=2) — 31.0X

3
%

Blosc(cname="Iz4', clevel=1, shuffle=2) —
Blosc(cname="blosclz’, clevel=9, shuffle=2) —

I © >

30.7X
28.3X

Blosc(cname="blosclz’, clevel=5, shuffle=2) —

Blosc(cname="blosclz’, clevel=1, shuffle=2) —

Blosc(cname="snappy’, clevel=98, shuffle=2) — 10X

Blosc(cname="zstd', clevel=5, shuffle=0) — 47 4X

Blosc(cname="zstd', clevel=1, shuffle=0) — 3B.T7X

Blosc(cname="zlib’, clevel=5, shuffle=0) - 42 2X

B
w
P

Blosc(cname="zlib’, clevel=1, shuffle=0) —

Blosc(cname='Iz4hc’, clevel=5, shuffle=0) - — 342X
Blosc(cname="lz4hc’, clevel=1, shuffle=0) — _
Blosc(cname="Iz4', clevel=9, shuffle=0) — _ 189X
Blosc(cname="1z4’', clevel=5, shuffle=0) — _ 18.5X
Blosc(cname="1z4', clevel=1, shuffle=0) — _ 18.1X
Blosc(cname="blosclz', clevel=9, shuffie=0) - [NN :
Blosc(cname="blosclz’, clevel=5, shuffle=0) — _ 19.7X
Blosc(cname="blosclz’, clevel=1, shuffle=0) — _ 82X
Blosc(cname="snappy’, clevel=9, shuffle=0) — _ 10X
Blosc(cname=1z4', clevel=0, shufiie=0) - [N NN o
LZMA(format=1, check=-1, preset=1, filters=None) — . 487X
Bz2(level=1) - [} 70.9x
Zib(level=1) l. 29.0X
one | - | : <
| | | | | | |
0 2000 4000 6000 8000 10000 12000

Speed (M/s)

http://alimanfoo.qgithub.io/2016/09/21/genotype-compression-benchmark.html

http://alimanfoo.github.io/2016/09/21/genotype-compression-benchmark.html

Containers in Blosc?2

Super-chunk

Pointers

* Sparse
* [n-memory

Frame

Codec
Filter pipeline

Metalayers

Chunk O

Chunk 1

Chunk 2

Chunk Index

UserMeta

Fingerprint

e Sequential
* In-memory / On-disk

Header

Trailer

Metalayers in Blosc?2

e Metalayers are small metadata for informing about the
kind of data that is stored on a Blosc2 container.

e They are handy for defining layers with different specs:
multi-dimensions, data types, geo-spatial...

BLosC

MetaLayers In Blosc2

¢ 5

GeoSpatial Genomics

Astronomy Nuclear

P o
CATERVA

BLosC

Layer1 Container

Machine
Learning

Microscopy

Multiple layers to target different data aspects

Caterva MetalLayer

Caterva specifies a metalayer on top of a Blosc2 container
for storing multidimensional information:

typedef struct {
1nt8_t ndim;
//'< The number of dimensions
uinto4_t dims[CATERVA_MAXDIM];
//'< The size of each dimension

1nt32_t pdims[CATERVA_MAXDIM]; '
//1< The size of each partition dimension °
} caterva_dims_t; ‘ O

This metalayer can be modified so that the shapes can be
updated (e.g. an array can grow or shrink).

Why Caterva is Type
Agnostic?
* There are too many data type systems floating around.

 Multi-dimensionality is orthogonal to the data type.

* This is why we decided not to make the type part of
Caterva.

* The interested parties can always define a metalayer fqr',
endowing the desired type system to the data. ‘e
@

Example: add a metalayer for specifying the data type
https://github.com/Blosc/cat4py/blob/master/notebooks/
array-metalayer.ipynb

https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb
https://github.com/Blosc/cat4py/blob/master/notebooks/array-metalayer.ipynb

Frame Format and
Metalayers Specs

* The format for a Blosc2 frame is completely specified at:

BLosC

e https://qgithub.com/Blosc/c-blosc2/blob/master/
README FRAME FORMAT.rst

* The format for a Caterva metalayer:

e https://qgithub.com/Blosc/Caterva/blob/master/ .’0 ®
README CATERVA METALAYER.rst »

Everything specified in the msgpack format.

https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/c-blosc2/blob/master/README_FRAME_FORMAT.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://github.com/Blosc/Caterva/blob/master/README_CATERVA_METALAYER.rst
https://msgpack.org

One Last Feature

Temperature 23.3

Pressure 1024.3

TimeStamp 2019-09-18

Msgpack

Others object

Frame

Codec
Filter pipeline

Metalayers

Header

Chunk O

Chunk 1

Chunk 2

Chunk Index

UserMeta

Trailer

Fingerprint

Blosc2 containers support variable length user metadata

BLosC

Where Caterva Can Help?

* \Whenever there is a need to deal with multidimensional
datasets as fast as possible.

* Provide a backend for other packages (bcolz? zarr?).

e (Caterva is written in portable C99, so no limitations to
be wrapped from other languages than e.g. Python.

* Allow to create different metalayers that adapt to user’s

needs. Yy X
0.‘
O

https://bcolz.readthedocs.io/en/latest/
https://zarr.readthedocs.io/en/stable/

Where You Can Help?

 Blosc2, Caterva and catd4py (Caterva’s Python wrapper),
are all open source, so you can always contribute with
ideas and code.

* |f you like the concepts behind the Blosc project as a
whole, and you don’t have time to contribute with code,
please donate to:

NUMFOCUS

OPEN CODE = BETTER SCIENCE

BLosC

https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org
https://numfocus.org

Overview

e Catervais a C library and a format for handling
multidimensional data on top of Blosc2 containers.

* The main goal is to efficiently leverage fast storage like
memory, persistent memory (Intel Optane) or SSDs.

* You can use metalayers for adapting Caterva containers
to your own needs.

https://github.com/Blosc/caterva ." ®
https://github.com/Blosc/c-blosc2 @

BLrosC

Acknowledgements

First and foremost to Aleix Alcacer who
contributed most of the code behind
Caterva.

Christian Steiner, for suggestions and
improvements on Blosc?2 / Caterva projects.

Pepe Aracil, for his proposal for using
msgpack for serializing Blosc2 containers.

Last but not least, NumFOCUS for providing N U M F@CUS

funding for developing Blosc2 and Caterva. OPEN CODE = BETTER SCIENCE

Thank You!

Questions?

CATERVA

