
Update on Blosc2
New Features And What We Are Working On

Francesc Alted / @FrancescAlted

The Blosc Development Team / @Blosc2

CEO / @ironArray

LEAPS Innov WP7 (data reduction and compression) meeting
March 29th 2023

2 /

What is Blosc2?

ü Next generation of
Blosc(1), a high
performance
compressor.

ü Blosc2 adds 63-bit
containers that expand
over the existing 31-bit
containers (chunks) in
Blosc1.

ü Metalayers for adding
info for apps and users.

App1

App2

Header:
Fixed Length
Metalayers

Data:
Super-Chunk

Trailer:
Var Length
Metalayers
(up to 2 GB)

Chunk 1

Block 1

Block 2

...

Block N

Chunk N

... Block 1

Block 2

...

Block N
vlmeta1

vlmeta2

vlmeta3

The Blosc
Development
Team

Aleix Alcacer

Oscar Guiñón

Marta Iborra

Alberto Sabater

Nathan Moinvaziri

Francesc Alted (BDFL)

Agenda

The second partition in Blosc2/HDF5:
what’s it providing?

New Blosc2 NDim and NDArray
objects

Bytedelta: enhancing your
compression toolset

Ongoing Work

The second partition in
Blosc2/HDF5
What is it providing?

• Chunks and Blocks: allow
better granularity during
compression/decompression
• Modern processors work
best when workloads fit in
internal caches
• Chunks can be set to fit in L3
cache, and blocks to fit in
L1/L2

Better performance!

Table with 2 partitions

Implementation of a second partition in
HDF5/PyTables

Second partition at work

• Much higher speed than default ZLIB + shuffle in HDF5
• 2x performance than plain HDF5 with no compression
• Almost reaching perf of efficient, pure in-memory libraries like pandas

• Using data from
ERA5 datasets

• Inkernel queries
=> full scan on disk

Bypassing the HDF5 pipeline

• HDF5 pipeline
implementation is powerful
but slow

• PyTables has support for
bypassing it via the
H5Dwrite_chunk /
H5Dread_chunk

• Unleash the full I/O parallel
in Blosc2

Bypassing the HDF5 pipeline: Writing

Blosc2 optimized -> bypass the HDF5 pipeline. Almost 2x faster!

Bypassing the HDF5 pipeline: Reading

Blosc2 optimized -> bypass the HDF5 pipeline. Almost 2x faster!

NDim And NDArray
Blosc2 Goes Multidimensional

C-Blosc2 NDim: Multidimensions for C

ü Each NDim array is split in
chunks

ü Each chunk is split in blocks
ü All the partitions are

multidimensional!
ü Metalayer representing

both multidimensionality
and data types (new!)

https://www.blosc.org/c-blosc2/reference/b2nd.html

https://www.blosc.org/c-blosc2/reference/b2nd.html

NDArray: Blosc2 NDim for Python

Features:

• Create arrays in memory or on disk
• Flexible resize (including shrinking)
• Support for all NumPy data types
• Efficient conversion from/to NumPy
• Mimic NumPy API
• Version 2.1 out; meant for production

Output:

https://www.blosc.org/python-blosc2/reference/ndarray_api.html

https://www.blosc.org/python-blosc2/reference/ndarray_api.html

Blosc2 NDim read/write performance

• Doing a complete read is
generally faster

• Writing is more expensive
because of the overhead
of double partitioning

https://www.blosc.org/posts/blosc2-ndim-intro/

4-d array:
• shape: (50, 100, 300, 250)
• chunk shape: (10, 25, 50, 50)
• block shape: (3, 5, 10, 20)
• data type: float64

https://www.blosc.org/posts/blosc2-ndim-intro/

Leveraging the second partition
in Blosc2 NDim

Much more selective and
faster queries!

Blosc2 NDim HDF5 / Zarr / others

Blosc2 NDim partial read performance

Faster slicing due to higher data selectivity in double partitioning

Bytedelta
A new filter for Blosc2

Bytedelta: How it works

https://www.blosc.org/posts/bytedelta-enhance-compression-toolset/

shuffle ->

bytedelta ->

Blosc2 Filter Pipeline

Based on initial work by Aras Pranckevičius

https://www.blosc.org/posts/bytedelta-enhance-compression-toolset/
https://aras-p.info/blog/2023/03/01/Float-Compression-7-More-Filtering-Optimization/

Bytedelta: How does it perform?

Tested on 5 different ERA5 datasets
(atmospheric reanalysis of the global climate):
wind, snow, flux, precip and pressure

• Some show some complex structure (wind)
• Others are simpler (snow)

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5

Bytedelta: How does it perform?

Bytedelta compress better than shuffle or bitshuffle on average
Median for bytedelta (best): 6.36 x
Median for bitshuffle (second best): 5.66 x

Bytedelta: How does it perform?

Compression ratio depends on the dataset (surprise!)

• Compression ratio
versus dataset

• Points for all the
general codecs in
Blosc2 (BLOSCLZ, LZ4,
LZ4HC, ZLIB, ZSTD),
and for different
filters

Bytedelta: How does it perform?

Compression ratio for the
datasets with more complexity
(entropy)

For pressure, bytedelta achieves up to 37% better results than second best (!)

14% {

8% {

37%{

Bytedelta works best in combination with ZSTD codec (and high clevels of ZLIB)

Bytedelta shows excellent compression speed when using ZSTD with clevel 1

Bytedelta + ZSTD level 1: a good default
(specially for complex datasets)

Ongoing Work

Fine Tuning Performance with BTune

• BTune can fine tune the different
parameters of the underlying
Blosc2 storage to perform as best
as possible.

• Can be trained to find the best
codec & filter with deep learning.

• Looking for beta testers!

https://btune.blosc.org

Support for High Throughput JPEG 2000
(HTJ2K)
• Experimenting with OpenHTJ2K, an open source HTJ2K

implementation by Osamu Watanabe.
• We already have a working implementation, but:

• It cannot leverage Blosc2 multithreading
• Big library: cannot be included straight in C-Blosc2

Proposal:
Use a smarter plugin system that can load plugins dynamically in
runtime. Already working on that, but need more resources.

https://github.com/osamu620/OpenHTJ2K

Conclusion

Blosc2 is making rapid progress

The Blosc2 development team has recently:

• Implemented native support for Blosc2 in HDF5,
bypassing the HDF5 pipeline

• New Ndim and NDArray objects for easy handling of
multidimensional data containers

• New bytedelta filter
• BTUNE, a tool for automatically select best Blosc2

parameters, is in beta
• Prospective work done for High Throughput JPEG 2000

Blosc2: a highly efficient and flexible tool for
compressing your data, your way

Proposals

1. Use Blosc2 in combination with HDF5 direct chunking mechanism
for efficient compression and parallel I/O.

2. Help in determing optimal compression pipelines by adapting to
user data and using machine learning techniques.

3. Support for High Throughput JPEG 2000

Thanks to donors
& contracts!

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.8.0.

Jeff
Hammerbacher

Enjoy data!

https://blosc.org/

