
Report on improvements in
the HDF5/Blosc2 integration

Francesc Alted / @FrancescAlted@masto.social

The Blosc Development Team / @Blosc2@fosstodon.org

CEO / francesc@ironArray.io

LEAPS INNOV Meeting -- Kraków, Poland
April 8th 2024

Agenda

Plugins for JPEG2000

Support for Blosc2 Ndim in HDF5

Btune: Predicting the best codecs and filters

Handling sparse datasets with Blosc2

Caterva2: On-demand access to local/remote
Blosc2/HDF5 data repositories

Intro

What is Blosc?

ü A collection of codecs
and filters for
compressing binary data

ü Goal: sending data from
memory to CPU (and
back) faster than
memcpy().

ü Combining chunking and
blocking: divide and
conquer.

What is Blosc2?
ü Adds 63-bit containers.
ü Metalayers for adding

info for apps and users.
ü Multidimensional blocks

and chunks.

App1

App2

Header:
Fixed Length
Metalayers

Data:
Super-Chunk

Trailer:
Var Length
Metalayers
(up to 2 GB)

Chunk 1

Block 1

Block 2

...

Block N

Chunk N

... Block 1

Block 2

...

Block N
vlmeta1

vlmeta2

vlmeta3

Who is ironArray SLU?

• We are the developers of PyTables, numexpr and Blosc ecosystems
• Team of experts empowering you to harness the full potential of

compression for big data: we are here to help!

https://ironarray.io

https://ironarray.io/

Plugins for JPEG 2000

Introducing grok and OpenHTJ2K
dynamic plugins

• OpenHTJ2K, an open source HTJ2K implementation by Osamu
Watanabe.

• Grok, another free implementation for HTJ2K by Grok Image
Compression Inc.

• Packed and distributed as Python wheels:

• $ pip install blosc2-openhtj2k
• $ pip install blosc2-grok

Grok supports 16-bit gray images, while OpenHTJ2K is only 12-bit

https://github.com/osamu620/OpenHTJ2K
https://github.com/GrokImageCompression/grok

Lossy compression with
grok and itrunc+zstd

• JPEG 2000 can achieve much
better quality for the same
compression ratio.

• For low compression ratios,
itrunc can provide similar
quality.

Dataset:
http://www.silx.org/pub/leaps-

innov/tomography/lung_raw_2000-
2100.h5

http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5
http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5
http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5

Lossy compression with
grok and itrunc+zstd

Speed-wise, itrunc+bitshuffle+zstd is very competitive

JPEG 2000 in grok is still very fast!

Same order of cratio than OpenJPEG, but 10x faster

New: Ability to link with C/C++ Apps

• We recently added the possibility to use the blosc2-grok plugin with

C/C++ applications.
• You can tweak almost all the params that grok allows:

https://github.com/Blosc/blosc2_grok?tab=readme-ov-file
• This allows JPEG 2000 to be used in scenarios where C/C++ is the

main language (e.g. acquisition devices).
• See example using HDF5 + Blosc2 + grok at:
https://github.com/Blosc/leaps-examples/tree/main/c-compression

https://github.com/Blosc/blosc2_grok?tab=readme-ov-file
https://github.com/Blosc/leaps-examples/tree/main/c-compression

Future Work

• WebAssembly

• JPEG 2000 has a lot of potential to be sent to a browser and be
decompressed in-place (much less data to send).

• Blosc2 (+ plugins) in the browser (see demo on Caterva2
later)

• Better interaction with hdf5plugin for setting different
parameters (cratio, dB…). For now, this is possible via HDF5 direct
chunking.

Support for Blosc2 NDim
in h5py / HDF5

Leveraging the second partition
in Blosc2 NDim

Much more selective and
hence, faster queries!

Blosc2 NDim HDF5 / Zarr / others

Bypassing the HDF5 pipeline:
Direct Chunking

• HDF5 pipeline
implementation is powerful
but known to be slow.

• This can be bypassed using
direct chunking in HDF5.
Integrated in new b2h5py.

• New version of Blosc2 plugin
for HDF5. It has been
included in hdf5plugin.

HDF5

Blosc2

H5Dwrite_chunk

chunk chunk

HDF5 Storage

H5Dget_chunk_info

b2h5py: Use Blosc2 Inside Direct
Chunking

• All compression and
decompression executed in
parallel via Blosc2!

• Blosc2 can do parallel I/O for
reads

• Blosc2 can do chunk reads
with enhanced selectivity
from disk

• Data can still be read with
hdf5plugin and h5py.

https://github.com/Blosc/b2h5py

https://github.com/Blosc/b2h5py

HDF5 pipeline vs direct chunking:
Reading orthogonal slices with b2h5py

Faster slicing due to higher data selectivity in double partitioning

constant dim0

constant dim1 constant dim2

Btune: automatic selection
of the best codecs / filters

Allowing selection of Btune params
programmatically
kwargs = {

 "tradeoff": 0.3,

 "perf_mode": blosc2_btune.PerformanceMode.DECOMP,

 "models_dir": f"{base_dir}/models/"}

blosc2_btune.set_params_defaults(**kwargs)

https://btune.blosc.org

With that, and after a training, Btune predicts the best parameters per chunk

https://btune.blosc.org/

New Lossy Mode in Btune

Works by combining neural networks and heuristics

Example of Prediction of Lossy Codecs

Example with tradeoff (cratio=0.7, speed=0.2, quality=0.1)

In this case, cratio was important, but quality not that much, so grok
with a cratio 8x is being predicted per every chunk.

Challenges for Btune

• It does not have a good (and fast) estimator for the image quality

(This is why we are using heuristics here)

• There is great potential on finding image quality estimator

Nice (and quite challenging) project for the future

Handling sparse data

Compressing sparse data with Blosc2

Blosc2 has many provisions for compressing sparse data:
• Blocks of zeros can be represented by just 4 bytes
• Chunks of zeros can be represented by just 8 bytes
• Sequence of several chunks of zeros can be represented with 8

bytes.
Automatic zero detection:
• Such runs (blocks or chunks) of zeros can be detected

automatically, but you can provide chunks of zeros explicitely too.

Example: X-ray diffraction

• A sample image. A tomography can
be formed by 1000’s of them.

• When compressing, it is important to
be able to specify different
partitions: this can make a huge
difference in compression ratio, or
speed.

• Blosc2 allows to do that in two-level,
multidimensional partitions.

Chunk

Block

http://www.silx.org/pub/leaps-innov/sparse_image_stack.h5

http://www.silx.org/pub/leaps-innov

Example: X-ray diffraction

Blosc2+Shuffle+Zstd shines with this sparse dataset

https://github.com/Blosc/leaps-examples/tree/main/sparse

https://github.com/Blosc/leaps-examples/tree/main/sparse

Example: X-ray diffraction

Blosc2+Shuffle+LZ4 shows good balanced speed (~1000 fps)

Computing with sparse data

New LazyExpr computation engine in Blosc2:
summing at 1000 fps

Work for the future

• It should be nice to skip computations on blocks/chunks that
are full of zeros

• Add linear algebra computations to blosc2.NDArray instances
• Other functionality (FFTs)?

Caterva2: On-demand
access to local/remote
Blosc2/HDF5 datasets

Root 1

Root 2

Root 3

Publisher 1 Publisher 2 Publisher 3

Broker

Subscriber 1 Subscriber 2 Subscriber 3

Client 1 Client 2 Client 3

PubSub Data Flow

Putting data closer to the user

Publisher

Client

Subscriber 3

Subscriber 2

Subscriber 1Client

Client

Client

Subscriber 4Client

Client

Client

Client

Client

Root 1

Publisher 1

Subscriber 1

Client 1

Whole dataset

Cache client slice

Interesting slice

Compressed transmission

Compressed transmission
(if Blosc2 available)

Client 2

Fetch and cache
only the
interesting data

Demo time

• Go to demo.caterva2.net and try the interface by yourself.
• The demo box is a cheap 8 GB RAM, 64 GB disk and 4 cores,

running Ubuntu 22.04 and in aarch64.
• Provider is hetzner.com in Nuremberg, Germany (so near to

Krakow).

http://demo.caterva2.net/

Work for the future

• Integrate LLM in the search box
• More plugins (on demand; suggestions?)
• Increase stability
• Make cache eviction more fine grained (now all the dataset is

thrown away when it changes in the publisher)

Conclusion

Progress made in integrating Blosc2
with HDF5

• Plugins for High Throughput JPEG 2000
• Implemented native support for Blosc2 NDim in

HDF5, bypassing the HDF5 pipeline
• Btune, has got support for lossy compression

when predicting the best Blosc2 parameters
• Caterva2, making Blosc2/HDF5 data generally

available with easy and efficiency.

Blosc2: a highly efficient and flexible tool for
 compressing your data, your way

Koniec and thanks! Questions?

We make compression better
contact@ironarray.io

