BLosC

[] ironArray

Report on improvements in
the HDF5/Blosc2 integration

Francesc Alted / @FrancescAlted@masto.social
The Blosc Development Team / @Blosc2@fosstodon.org

CEO [[]] ironArray / francesc@ironArray.io

LEAPS INNOV Meeting -- Krakow, Poland
April 8th 2024

Agenda

g
3
m

BLosC

Plugins for JPEG2000

Support for Blosc2 Ndim in HDF5

Btune: Predicting the best codecs and filters

Handling sparse datasets with Blosc2

Caterva2: On-demand access to local/remote
Blosc2/HDF5 data repositories

Intro

I What is Blosc?

v

A collection of codecs
and filters for
compressing binary data

Goal: sending data from
memory to CPU (and
back) faster than

memcpy().
Combining chunking and

blocking: divide and
conquer.

Binary dataset

[i 1]] ironArray

—
=
L1 cache

CPU
=

Blosc container

[11] ironArray

Fixed Length
Metalayers

I What is Blosc2? Header:

Adds 63-bit containers.

. Metalayers for adding
info for apps and users.

. Multidimensional blocks Data:
Super-Chunk
and chunks.

vimetal

Trailer:
Var Length Al
Metalayers
(Up to 2 GB) vimeta3

I3l £

I Who is ironArray SLU? (1 ronary

« We are the developers of PyTables, numexpr and Blosc ecosystems

« Team of experts empowering you to harness the full potential of
compression for big data: we are here to help!

[[I]]] IrOonAr ray

https://ironarray.io

https://ironarray.io/

Plugins for JPEG 2000

[[1] ironArray

Introducing grok and OpenHT)2K s

dynamic plugins

« OpenHTJ2K, an open source HTJ2K implementation by Osamu
Watanabe.

« Grok, another free implementation for HTJ2K by Grok Image
Compression Inc.

- Packed and distributed as Python wheels:

« $ pip install blosc2-openhtj2k
« $ pip install blosc2-grok

Grok supports 16-bit gray images, while OpenHTJ2K is only 12-bit

https://github.com/osamu620/OpenHTJ2K
https://github.com/GrokImageCompression/grok

Lossy compression with [romreay
grok and itrunc+zstd

SSIM vs cratio (itruncl6: range(15, 5, -1))

_ 1001 ®®
« JPEG 2000 can achieve much
better quality for the same
compression ratio. naill
- For low compression ratios, .
itrunc can provide similar 3
H c
quality. =
»n 0.94
wn
) 0.92 1
Dataset: — grok-rates M
http://www.silx.org/pub/leaps- —- :runCiZ-;htuf:lef-ﬂzstdStds \\\\
. 0.90 - -=®- [runcleé-bitshuitie-zs DN
innov/tomography/lung raw_2000- —e- itrunc16-bytedelta-zstds S
2100.h5 . ; : : .
- 2 = 6 8 10

Compression ratio

http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5
http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5
http://www.silx.org/pub/leaps-innov/tomography/lung_raw_2000-2100.h5

Lossy compression with [ﬂ'}u '
grok and itrunc+zstd

Compression speed (itruncl6: range(15, 5, -1)) Decompression speed (itruncl6: range(15, 5, -1))
700 1 ? —— grok-rates f —— grok-rates
i —— itruncl6-shuffle-zstd5 o —— itruncl6-shuffle-zstd5
600 - | -@®- itrunclé-bitshuffle-zstd5 2000 4 I -@- itruncl6-bitshuffle-zstd5
i —8- itruncl6-bytedelta-zstd5 | —8- itrunclé-bytedelta-zstd5
500 - + |
@ | @ 1500 + ‘\
2 400 - @
= ! o--0--"C————- o -———m————=—= o =
3 | % Po 3
23004 ; A/ 8 1000
n I & n
!
2001 |
! ® —® 500 -
1907 l\ W" ''''''''''' e
o 5 X 5 s
. —% o < o - o . sy > > >
2 4 6 8 10 2 4 6 8 10
Compression ratio Compression ratio

Speed-wise, itrunc+bitshuffle+zstd is very competitive

JPEG 2000 in grok is still very fast! [ﬁ'}u l

Time vs cratio (dB-Open)PEG: range(90, 45, -5))

0.25 - X
0.20
w
v 0.15 - - grok
£ —— pillow
=
0.10 -
0.05
'b....-._.._.. @ ®
2 4 6 10 12 14

Same order of cratio than OpenlJPEG, but 10x faster

New: Ability to link with C/C++ Apps | s

« We recently added the possibility to use the blosc2-grok plugin with
C/C++ applications.

* You can tweak almost all the params that grok allows:
https://github.com/Blosc/blosc2 grok?tab=readme-ov-file

 This allows JPEG 2000 to be used in scenarios where C/C++ is the
main language (e.g. acquisition devices).

« See example using HDF5 + Blosc2 + grok at:

https://github.com/Blosc/leaps-examples/tree/main/c-compression

https://github.com/Blosc/blosc2_grok?tab=readme-ov-file
https://github.com/Blosc/leaps-examples/tree/main/c-compression

BLosC
Future Work (] ronArray

« WebAssembly

« JPEG 2000 has a lot of potential to be sent to a browser and be
decompressed in-place (much less data to send).

 Blosc2 (+ plugins) in the browser (see demo on Caterva2
later)

« Better interaction with hdf5plugin for setting different

parameters (cratio, dB...). For now, this is possible via HDF5 direct
chunking.

Support for Blosc2 NDim
in h5py / HDF5

[[] ironArray

Leveraging the second partition (1] romrray
in Blosc2 NDim

o 40
o &

Much more selective and
hence, faster queries!

""

9
B4

4

VT

Blosc2 NDim HDF5 / Zarr / others

Bypassing the HDF5 pipeline: []]Bimay

Direct Chunking

« HDF5 pipeline 1]
implementation is powerful
but known to be slow. |

« This can be bypassed using |-

direct chunking in HDF5.
Integrated in new b2h5py.

fOI’ HDFS. It haS been Application progra
included in hdf5plugin.

« New version of Blosc2 plugin \

[>]
5
"
=

b2h5py: Use Blosc2 Inside Direct [T ironArray
Chunking

« All compression and
decompression executed in
parallel via Blosc2!

« Blosc2 can do parallel I/O for
reads Blosc2

« Blosc2 can do chunk reads fT*
with enhanced selectivity :
from disk

e Data can still be read with
hdf5plugin and h5py.

S S N S R R R R R R RS

;\\\\\\\\m HDF5 Storage

https://github.com/Blosc/b2h5py

https://github.com/Blosc/b2h5py

HDF5 pipeline vs direct chunking: [ﬁ'}u l
Reading orthogonal slices with b2h5py

shape 50x100x300x250 (2.8G), chunk 10x25x150x100 (28.6M), block 10x25x32x32 (2.0M)

900
800
700
constant dimO 600
2 500
>
© 400
300
- . J -
0 [
dim0 diml dim2 dim3

constant dim1l constant dim2

B hS5py/Blosc2 filter
B h5py/Blosc2 o ptimized

Throughput (M/s)

Faster slicing due to higher data selectivity in double partitioning

Btune: automatic selection
of the best codecs / filters

A
STUNE
v

: : BLosC
Allowing selection of Btune params (1 ronarra

programmatically
kwargs = {
"tradeoff": 0.3,
"perf_mode": blosc2 btune.PerformanceMode.DECOMP,

"models dir": f"{base dir}/models/"}

blosc2 btune.set params_defaults(**kwargs)

With that, and after a training, Btune predicts the best parameters per chunk

https://btune.blosc.org

https://btune.blosc.org/

New Lossy Mode in Btune [ﬁ'ﬂ] I

Quality

o
{BTUNE
v

Tradeoff

o Immmmmmm)

Cratio

Tradeoff

Speed Cratio

Lossless compression Lossy compression

Works by combining neural networks and heuristics

Example of Prediction of Lossy Codecs

(btune_arm64) martaiborra@acBook-Air examples % BTUNE_TRADEOFF="(0.7, 0.2, @.1)" BTUNE_TRACE=1 python quality_mode.py

Performing compression using Btune

Btune version: 1.1.2
Performance Mode: COMP, Compression tradeoff: (0.700000, 0.200000, 0.100000), Bandwidth:
Behaviour: Waits - @, Softs - 5, Hards - 10, Repeat Mode - STOP
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.

TRACE: time load model: 0.000294

Cratio:

Minimum ssim:

Codec
grok
grok
grok
grok
grok

| Filter

(SIS ISR

I 0

Split

(SIS IS IS RS

8.001620890749567
Compression speed (GB/s):

| C.Level

(2 IV, RV, BV, By

0.908711549595501

C.Threads

> D DD

0.04857454307398124

Example with tradeoff (cratio=0.7,

D.Threads

PN NN

S.Score
0.0328
0.0543
0.0554
0.0547
0.0552

C.Ratio

8x
8x
8x
8x
8x

20 GB/s

Btune State
CODEC_FILTER
CODEC_FILTER
CODEC_FILTER
CODEC_FILTER
CODEC_FILTER

In this case, cratio was important, but quality not that much, so grok
with a cratio 8x is being predicted per every chunk.

speed=0.2, quality=0.1)

Winner

BLosC

[] ironArray

BrosC
Challenges for Btune [] ironArray

It does not have a good (and fast) estimator for the image quality

(This is why we are using heuristics here)

- There is great potential on finding image quality estimator

Nice (and quite challenging) project for the future

A
STUNE
v

Handling sparse data

: : Blos¢
Compressing sparse data with Blosc2 (jion,

Blosc2 has many provisions for compressing sparse data:
« Blocks of zeros can be represented by just 4 bytes
« Chunks of zeros can be represented by just 8 bytes

« Sequence of several chunks of zeros can be represented with 8
bytes.

Automatic zero detection:

« Such runs (blocks or chunks) of zeros can be detected
automatically, but you can provide chunks of zeros explicitely too.

: : Blos¢
Example: X-ray diffraction [ronavra

Chunk

0 500 1 1000 1500 2000

« Asampleimage. Atomography can
be formed by 1000’s of them.
500
* When compressing, it is important to
be able to specify different
partitions: this can make a huge
difference in compression ratio, or
speed. 1500

1000

* Blosc2 allows to do that in two-level,

o qe . - 2000
multidimensional partitions.

http://www.silx.org/pub/leaps-innov/sparse image stack.h5

http://www.silx.org/pub/leaps-innov

Example: X-ray diffraction

Compression ratios (Blosc2+Shuffle vs BitShuffle vs scipy.sparse)

10° 837.5x
| 309.2x 296.2x 296.2x
] 160.1x
102_ 97.3x
o]
e]
e]
12.3x
10" 5 8.2x 8.2x
: x 11
BloscLz Lz4 ZLB Zstd bslz4 bszstd ~ COO CSR csc BSR

Blosc2+Shuffle+Zstd shines with this sparse dataset

https://github.com/Blosc/leaps-examples/tree/main/sparse

[1] ironArray

https://github.com/Blosc/leaps-examples/tree/main/sparse

Example: X-ray diffraction

[1] ironArray

Compression speeds

Decompression speeds
7 i
8 i
6.
@ 61 @ °]
o) [a)
© © 4
D4 9
] O 3
Q Q
n n
2 4
2 i
1 4
0- 0-
BloscLZ ZLIB Zstd BloscLZ ZLIB Zstd

Image Image

Blosc2+Shuffle+LZ4 shows good balanced speed (~1000 fps)

Computing with sparse data

[1] ironArray

Sum of 5 images (blosc2.LazyExpr vs scipy.sparse)

0.008 -
0.006 A
m
E
%]
E 0.004 1
0.002 A I I
0.000 I l I
BloscLZ ZLIB Zstd numpy numexpr co
Method

New LazyExpr computation engine in Blosc2:
summing at 1000 fps

BrosC
Work for the fUtu re [] ironArray

- It should be nice to skip computations on blocks/chunks that
are full of zeros

- Add linear algebra computations to blosc2.NDArray instances
 Other functionality (FFTs)?

Caterva2: On-demand
access to local/remote
Blosc2/HDF5 datasets

o o
CATERVA

-..'l.‘; PubSub Data Flow [ﬂ'ﬂ] l

CATERVAZ

Publisher 1 Publisher 2 Publisher 3

-

Broker

Subscriber 1 Subscriber 2 Subscriber 3

Client 1 Client 3

. Putting data closer to the user [ﬂ'}u '
‘ ¥ 2 R ' %

Sexs

==

@
..l. [ironArray
CATERVAZ Publisher 1 Whole dataset

Fetch and cache
only the
interesting data

Compressed transmission

Cache client slice

Compressed transmission
(if Blosc2 available)

' Interesting slice

D e m 0 ti m e [I ironArray

- Go to demo.caterva2.net and try the interface by yourself.

« The demo box is a cheap 8 GB RAM, 64 GB disk and 4 cores,
running Ubuntu 22.04 and in aarché64.

 Provider is hetzner.com in Nuremberg, Germany (so near to
Krakow).

http://demo.caterva2.net/

BrosC
Work for the fUtu re [] ironArray

« Integrate LLM in the search box
« More plugins (on demand; suggestions?)
« Increase stability

- Make cache eviction more fine grained (now all the dataset is
thrown away when it changes in the publisher)

[1] ironArray

Conclusion

N : BLos¢
Progress made in integrating Blosc2 (i,

with HDF5

* Plugins for High Throughput JPEG 2000

« Implemented native support for Blosc2 NDim in
HDF5, bypassing the HDF5 pipeline

- Btune, has got support for lossy compression
when predicting the best Blosc2 parameters

- Caterva2, making Blosc2/HDF5 data generally
available with easy and efficiency.

I Koniec and thanks! Questions?~
Z [[[1]] ironArray

contact@ironarray.io

We make compression better

