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Compression Is Everywhere



Blosc is Compression for Binary Data
(and a little bit more)

Goals

• Compress fast
• Compress efficiently
• Accelerate computation with numbers (binary data)
• Persistence of (compressed) data (Blosc2)



Leveraging Compression Straight to CPU (I)
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Leveraging Compression Straight to CPU (II)
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Breaking entropy (I)

Back in the 1940’s, Claude Shannon invented a way to measure the 
information content of a message and called it information entropy:

In theory, you cannot compress a dataset beyond that entropy.
However, Shannon did not take into account that symbol ordering
(and not only probability of occurrence) is important when finding ways 
to express messages in less space than such information entropy.



Breaking entropy (II)

Blosc comes with so-called filters that are about re-ordering data 
before the encoding stage.  One example is the shuffle filter:

This typically allows codecs to go beyond information entropy limits.



Performance of Vector and Parallel Hardware

Blosc2 uses vector and 
multithreading in 
modern CPUs for fast 
filtering and 
compression:

• Intel: SSE2, AVX2
• ARM: NEON
• PowerPC: ALTIVEC



What is Blosc?

ü Sending data from CPU 
to memory (and back) 
faster than memcpy().

ü Split in blocks for better 
cache use: divide and 
conquer.

ü It can use different 
filters (e.g. shuffle, 
bitsuffle) and codecs 
(e.g. LZ4, Zlib, Zstd, 
BloscLZ).
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Leveraging Blosc the ‘right way’

ü Blocks should be 
decompressed and 
operated in private caches 
for best performance.

ü The need for data to fit in 
private caches is to avoid 
contention in Blosc
multithreading.

ü If possible, use all the data 
before it leaves caches.



Breaking memory walls (I)
Computing a reduction

https://www.blosc.org/posts/breaking-memory-walls/

https://www.blosc.org/posts/breaking-memory-walls/


Breaking memory walls (II)
Computing a mean `(a + b + c) / 3`

ironArray (leveraging Blosc2) can compute faster than NumPy, and also (parallel) Numba.

Precipitation 
data

https://ironarray.io/docs/html/bench/06.Expression_Evaluation_%28In-Memory%29.html


Where is Blosc used?

Blosc is used in many places in the PyData ecosystem:
• HDF5 / h5py (via hdf5plugin)

• HDF5 / PyTables (native)

• Zarr (via numcodecs)

• ironArray (Blosc2)

Lots of terrabytes compressed (and decompressed) on a daily basis!



What is Blosc2?

ü Blosc2 is the next 
generation of Blosc(1).

ü Blosc2 adds 63-bit 
containers (super-chunks) 
that expand over the 
existing 31-bit containers 
(chunks) in Blosc1.

ü Metalayers for adding info 
for apps and users.
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Filter pipeline: composing filters + codecs

prefilter filter 1 codec
src c_src

Compression process

Decompression process

tmp1 tmp2
filter 32 filter 160

tmp4tmp3

Filters pipeline

BLOSC_SHUFFLE          1

BLOSC_NDCELL           32

urfilter1                         160

postfilter filter 1 codec
src c_srctmp1 tmp2

filter 32 filter 160
tmp4tmp3
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Frames: Serializing super-chunks

Frames can live either
on disk or in memory



Frame specification is very simple

• Fully documented in less than 700 lines of text:
> wc -l README_*_FORMAT.rst

278 README_CFRAME_FORMAT.rst
283 README_CHUNK_FORMAT.rst
76 README_SFRAME_FORMAT.rst
637 total

• One of the reasons is that it rests on the shoulders of MessagePack
(https://msgpack.org), an efficient binary serialization format.

• Simplicity is important in terms of portability, and specially, safety.

https://msgpack.org/
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Filters and codecs work in parallel
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Filters and codecs work in parallel
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Block masks and parallel I/O

Specially effective when retrieving slices of multidim datasets. 



Masked & paralel I/O in multidim datasets

Much more selective and faster queries! 
Caterva (https://github.com/Blosc/caterva) and ironArray (https://ironarray.io)

https://github.com/Blosc/caterva
https://ironarray.io/


Masked & paralel I/O in multidim datasets

Better performance in general
(except for dimension where retrieving a chunk is already optimal)

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html
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Adaptability: plugins in local registry

BLOSC_SHUFFLE          1

BLOSC_BITSHUFFLE     2

BLOSC_DELTA                3

. . .

BLOSC_NDCELL           32

BLOSC_NDMEAN          33

. . .

urfilter1                         160

urfilter2                         161

. . .

Filters registry

cparams.filters[4] = 161;

Can be used now:To register locally:

int urfilter2(
blosc2_filter *filter) {
…

}

blosc2_register_filter(
urfilter2)

Blosc official registered filters
User local filters

User defined filter:

And a similar procedure goes for codecs too!



User plugin

Registering plugins in central registry
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Registering plugins in central registry

GitHub

Pull Request
User plugin Blosc

development team

Evaluation

process

To global 
registry

Specs
not fulfilled

Specs: https://github.com/Blosc/c-blosc2/tree/main/plugins



Plugins in central registry are easy to 
deploy

Central registered plugins are included and distributed within the Blosc2 library,
which can be installed using the Python wheels:

Very convenient in making your filter/codec accessible for everybody



Other features for Blosc2

• Safety/Security: we are actively using the OSS-Fuzz service for 
uncovering programming errors in C-Blosc2.

• Nice markup for documentation: See
https://c-blosc2.readthedocs.io

• Efficient support for special values: repeated values can be 
represented with an efficient, simple and fast run-length encoding.
This is really useful for storing sparse data.

• Python wrapper for Blosc2 (new 0.2.0 released):
https://python-blosc2.readthedocs.io

https://c-blosc2.readthedocs.io/
https://python-blosc2.readthedocs.io/


Python-Blosc2: A Python Wrapper

Python-Blosc2 is the official wrapper for the C-Blosc2 library:
import numpy as np
import blosc2

a = np.arange(1_000_000)

file_size = blosc2.save_tensor(a, "save_tensor.bl2", mode="w")
print("Length of saved tensor in file (bytes):", file_size)

a2 = blosc2.load_tensor("save_tensor.bl2")
assert np.alltrue(a == a2)

Supports NumPy, PyTorch and TensorFlow
(PyDTNN would be nice; volunteers? ;-) 



Speed vs Native 
Serialization

• Blosc2 is typically faster (and 
sometimes much faster) than 
PyTorch / TensorFlow.

• Compression allows for using 
less storage too



Comparison 
with other libs

Blosc2 can be faster than 
memcpy (numpy entry in plot)

https://mail.python.org/archives/list/numpy-
discussion@python.org/message/GDPQSAMXCWQDXVTQVJRDXKAQYGHM6JQ4/

https://mail.python.org/archives/list/numpy-discussion@python.org/message/GDPQSAMXCWQDXVTQVJRDXKAQYGHM6JQ4/


Conclusion



Adapting compression to your needs
➔Tackling compression includes a gazillion ways to do it, but basically:

➔Get the maximum compression ratio
➔Reduce the compression/decompression time to a maximum

➔Blosc2 comes with a rich set of codecs and filters that users can 
easily try to find the one that better fits to their needs

➔Blosc2 orchestrates these codecs and filters for:
➔Parallelization via multithreading
➔Reuse and sharing internal buffers for optimal memory 

consumption

The result is a highly efficient tool for compressing your way



Data is the most important part of your 
system
The Blosc development team is committed to the future of your data:
• Blosc2 has a very simple format, and hence is very portable and 

maintenable
• We have spent quite a lot of energy keeping it orderly and clean
• Last but not least, safety/security is paramount for us

Proactivity should be the primary mechanism of
data integrity



Myths To Be Debunked

• Compression introduces a lot of overhead

• FALSE: if correctly done, compression can actually accelerate 
most of the processes, including heavy in-memory 
computations!

• Compression is for experts

• FALSE: Blosc allows for easily trying different combinations of 
codecs for you to experiment!  If not satisfied, try and come 
with your own filter or codec.
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Thanks to 
donors!

Without them, we could not have possibly put Blosc2 into production 
status: Blosc2 2.0.0 came out in June 2021; now at 2.4.3.

Jeff
Hammerbacher



Enjoy data!

https://blosc.org/


