
Blosc2: Debunking Compression Myths

Francesc Alted - @FrancescAlted
The Blosc Development Team
CEO ironArray.io

https://blosc.org/

Python Castelló, November 4th 2022

@Blosc2

ironArray.io

Compression Is Everywhere

Blosc is Compression for Binary Data
(and a little bit more)

Goals

• Compress fast
• Compress efficiently
• Accelerate computation with numbers (binary data)
• Persistence of (compressed) data (Blosc2)

Leveraging Compression Straight to CPU (I)

Where
game
industry is
now

Leveraging Compression Straight to CPU (II)

Where
Blosc is
headed

Breaking entropy (I)

Back in the 1940’s, Claude Shannon invented a way to measure the
information content of a message and called it information entropy:

In theory, you cannot compress a dataset beyond that entropy.
However, Shannon did not take into account that symbol ordering
(and not only probability of occurrence) is important when finding ways
to express messages in less space than such information entropy.

Breaking entropy (II)

Blosc comes with so-called filters that are about re-ordering data
before the encoding stage. One example is the shuffle filter:

This typically allows codecs to go beyond information entropy limits.

Performance of Vector and Parallel Hardware

Blosc2 uses vector and
multithreading in
modern CPUs for fast
filtering and
compression:

• Intel: SSE2, AVX2
• ARM: NEON
• PowerPC: ALTIVEC

What is Blosc?

ü Sending data from CPU
to memory (and back)
faster than memcpy().

ü Split in blocks for better
cache use: divide and
conquer.

ü It can use different
filters (e.g. shuffle,
bitsuffle) and codecs
(e.g. LZ4, Zlib, Zstd,
BloscLZ).

Block 1

Block 2

...

Block N

...

L1/L2
Cache

CPU

Binary
dataset
(Chunk)

Blosc
Container

Block 1

Block 2

...

Block N L1/L2
Cache

CPU

Blosc
Container

Sum Total sum
+

+

Leveraging Blosc the ‘right way’

ü Blocks should be
decompressed and
operated in private caches
for best performance.

ü The need for data to fit in
private caches is to avoid
contention in Blosc
multithreading.

ü If possible, use all the data
before it leaves caches.

Breaking memory walls (I)
Computing a reduction

https://www.blosc.org/posts/breaking-memory-walls/

https://www.blosc.org/posts/breaking-memory-walls/

Breaking memory walls (II)
Computing a mean `(a + b + c) / 3`

ironArray (leveraging Blosc2) can compute faster than NumPy, and also (parallel) Numba.

Precipitation
data

https://ironarray.io/docs/html/bench/06.Expression_Evaluation_%28In-Memory%29.html

Where is Blosc used?

Blosc is used in many places in the PyData ecosystem:
• HDF5 / h5py (via hdf5plugin)

• HDF5 / PyTables (native)

• Zarr (via numcodecs)

• ironArray (Blosc2)

Lots of terrabytes compressed (and decompressed) on a daily basis!

What is Blosc2?

ü Blosc2 is the next
generation of Blosc(1).

ü Blosc2 adds 63-bit
containers (super-chunks)
that expand over the
existing 31-bit containers
(chunks) in Blosc1.

ü Metalayers for adding info
for apps and users.

Super Chunk

Sequence
of chunks

Var Length
Metalayers
(up to 2 GB)

Fixed Length
Metalayers
(few bytes)

Chunk 1

Chunk N

..

Filter Pipeline Serialization
Format

Parallel I/O Pluggable Codecs
& Filters

Blosc2: New features

Filter Pipeline Serialization
Format

Parallel I/O Pluggable Codecs
& Filters

Blosc2: New features

Filter pipeline: composing filters + codecs

prefilter filter 1 codec
src c_src

Compression process

Decompression process

tmp1 tmp2
filter 32 filter 160

tmp4tmp3

Filters pipeline

BLOSC_SHUFFLE 1

BLOSC_NDCELL 32

urfilter1 160

postfilter filter 1 codec
src c_srctmp1 tmp2

filter 32 filter 160
tmp4tmp3

Filter Pipeline Serialization
Format

Parallel I/O Pluggable Codecs
& Filters

Blosc2: New features

Frames: Serializing super-chunks

Frames can live either
on disk or in memory

Frame specification is very simple

• Fully documented in less than 700 lines of text:
> wc -l README_*_FORMAT.rst

278 README_CFRAME_FORMAT.rst
283 README_CHUNK_FORMAT.rst
76 README_SFRAME_FORMAT.rst
637 total

• One of the reasons is that it rests on the shoulders of MessagePack
(https://msgpack.org), an efficient binary serialization format.

• Simplicity is important in terms of portability, and specially, safety.

https://msgpack.org/

Filter Pipeline Serialization
Format

Parallel I/O Pluggable Codecs
& Filters

Blosc2: New features

Filters and codecs work in parallel

src1

Compression process

src2

src3

Thread 1

Thread 2

Thread 3

Filters and codecs work in parallel

src1

Compression process

tmp1

src2 tmp1

src3 tmp1

Thread 1

Thread 2

Thread 3

Prefilter

Filters and codecs work in parallel

src1

Compression process

tmp1 tmp2

src2 tmp1 tmp2

src3 tmp1 tmp2

Thread 1

Thread 2

Thread 3

Prefilter
Filters
pipeline

Filters and codecs work in parallel

Prefilter Codec

src1 c_src1

Compression process

tmp1 tmp2

Filters
pipeline

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Fram
e

either
on disk or in m

em
ory

Fram
e

either
on disk or in m

em
ory

Filters and codecs work in parallel

c_src1

Decompression process

c_src2

c_src3

Thread 1

Thread 2

Thread 3

Fram
e

either
on disk or in m

em
ory

Filters and codecs work in parallel

c_src1

Decompression process

tmp2

c_src2tmp2

c_src3tmp2

Thread 1

Thread 2

Thread 3

Codec

Fram
e

either
on disk or in m

em
ory

Filters and codecs work in parallel

c_src1

Decompression process

tmp1 tmp2

c_src2tmp1 tmp2

c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Codec
Filters
pipeline

Fram
e

either
on disk or in m

em
ory

Filters and codecs work in parallel

src1 c_src1

Decompression process

tmp1 tmp2

src2 c_src2tmp1 tmp2

src3 c_src3tmp1 tmp2

Thread 1

Thread 2

Thread 3

Postfilter Codec
Filters
pipeline

0 1

4 5 6

2

1098 11

7

3

15141312

Thread 1: 1, 5, 9

Thread 2: 2, 6, 10

Thread 3: 3, 7, 11

Block maskout F T T T F T T T F T T T F F F F

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block masks and parallel I/O

Specially effective when retrieving slices of multidim datasets.

Masked & paralel I/O in multidim datasets

Much more selective and faster queries!
Caterva (https://github.com/Blosc/caterva) and ironArray (https://ironarray.io)

https://github.com/Blosc/caterva
https://ironarray.io/

Masked & paralel I/O in multidim datasets

Better performance in general
(except for dimension where retrieving a chunk is already optimal)

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

https://ironarray.io/docs/html/tutorials/03.Slicing_Datasets_and_Creating_Views.html

Filter Pipeline Serialization
Format

Parallel I/O Pluggable Codecs
& Filters

Blosc2: New features

Adaptability: plugins in local registry

BLOSC_SHUFFLE 1

BLOSC_BITSHUFFLE 2

BLOSC_DELTA 3

. . .

BLOSC_NDCELL 32

BLOSC_NDMEAN 33

. . .

urfilter1 160

urfilter2 161

. . .

Filters registry

cparams.filters[4] = 161;

Can be used now:To register locally:

int urfilter2(
blosc2_filter *filter) {
…

}

blosc2_register_filter(
urfilter2)

Blosc official registered filters
User local filters

User defined filter:

And a similar procedure goes for codecs too!

User plugin

Registering plugins in central registry

GitHub

Pull Request
User plugin Blosc

development team

Registering plugins in central registry

GitHub

Pull Request
User plugin Blosc

development team

Evaluation

process

Registering plugins in central registry

To global
registry

Registering plugins in central registry

GitHub

Pull Request
User plugin Blosc

development team

Evaluation

process

To global
registry

Specs
not fulfilled

Specs: https://github.com/Blosc/c-blosc2/tree/main/plugins

Plugins in central registry are easy to
deploy

Central registered plugins are included and distributed within the Blosc2 library,
which can be installed using the Python wheels:

Very convenient in making your filter/codec accessible for everybody

Other features for Blosc2

• Safety/Security: we are actively using the OSS-Fuzz service for
uncovering programming errors in C-Blosc2.

• Nice markup for documentation: See
https://c-blosc2.readthedocs.io

• Efficient support for special values: repeated values can be
represented with an efficient, simple and fast run-length encoding.
This is really useful for storing sparse data.

• Python wrapper for Blosc2 (new 0.2.0 released):
https://python-blosc2.readthedocs.io

https://c-blosc2.readthedocs.io/
https://python-blosc2.readthedocs.io/

Python-Blosc2: A Python Wrapper

Python-Blosc2 is the official wrapper for the C-Blosc2 library:
import numpy as np
import blosc2

a = np.arange(1_000_000)

file_size = blosc2.save_tensor(a, "save_tensor.bl2", mode="w")
print("Length of saved tensor in file (bytes):", file_size)

a2 = blosc2.load_tensor("save_tensor.bl2")
assert np.alltrue(a == a2)

Supports NumPy, PyTorch and TensorFlow
(PyDTNN would be nice; volunteers? ;-)

Speed vs Native
Serialization

• Blosc2 is typically faster (and
sometimes much faster) than
PyTorch / TensorFlow.

• Compression allows for using
less storage too

Comparison
with other libs

Blosc2 can be faster than
memcpy (numpy entry in plot)

https://mail.python.org/archives/list/numpy-
discussion@python.org/message/GDPQSAMXCWQDXVTQVJRDXKAQYGHM6JQ4/

https://mail.python.org/archives/list/numpy-discussion@python.org/message/GDPQSAMXCWQDXVTQVJRDXKAQYGHM6JQ4/

Conclusion

Adapting compression to your needs
➔Tackling compression includes a gazillion ways to do it, but basically:

➔Get the maximum compression ratio
➔Reduce the compression/decompression time to a maximum

➔Blosc2 comes with a rich set of codecs and filters that users can
easily try to find the one that better fits to their needs

➔Blosc2 orchestrates these codecs and filters for:
➔Parallelization via multithreading
➔Reuse and sharing internal buffers for optimal memory

consumption

The result is a highly efficient tool for compressing your way

Data is the most important part of your
system
The Blosc development team is committed to the future of your data:
• Blosc2 has a very simple format, and hence is very portable and

maintenable
• We have spent quite a lot of energy keeping it orderly and clean
• Last but not least, safety/security is paramount for us

Proactivity should be the primary mechanism of
data integrity

Myths To Be Debunked

• Compression introduces a lot of overhead

• FALSE: if correctly done, compression can actually accelerate
most of the processes, including heavy in-memory
computations!

• Compression is for experts

• FALSE: Blosc allows for easily trying different combinations of
codecs for you to experiment! If not satisfied, try and come
with your own filter or codec.

The Blosc
Development
Team

Aleix Alcacer

Oscar Guiñón

Marta Iborra

Alberto Sabater

Nathan Moinvaziri

Francesc Alted

Thanks to
donors!

Without them, we could not have possibly put Blosc2 into production
status: Blosc2 2.0.0 came out in June 2021; now at 2.4.3.

Jeff
Hammerbacher

Enjoy data!

https://blosc.org/

