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Agenda

How Physics Laws Affect Data Science

Compressing Better

Computing Bigger

Caterva2: Sharing Faster



Who is ironArray SLU?

• We are the developers of PyTables, numexpr and Blosc libraries.

• Team of experts empowering you to harness the full potential of 
compression for big data: we are here to help!

https://ironarray.io

https://ironarray.io/


Intro
How Physics Laws Affect Data Science



Energy Consumption of the Transistor

The Power Wall: as transistors got smaller, they didn't proportionally reduce 
their power consumption as expected.

Power ∝ V² × f
V: voltage
f: frequency



Power Wall Consequences

Source:
Performance Analysis and
Tuning on Modern CPUs
By Denis Bakhvalov

https://products.easyperf.net/perf-book-2
https://products.easyperf.net/perf-book-2


The Shift to More Transistors

Instead of faster single cores, manufacturers now focus on:

• Multiple cores for parallel processing.

• Specialized processing units (GPUs, AI accelerators, dedicated media 
processors).

• Hardware acceleration for specific tasks (e.g. compression via Intel QAT).

• Larger caches to reduce memory bottlenecks.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-qat.html


CPUs Have Become Complex Beasts!

Intel Alder Lake



Memory Is Getting More Complex Too!

• Memory caches are closer to the CPU and hence, are faster.  However, they 
should be smaller due to power dissipation constraints.

• Efficient access to memory from multi-threaded applications is getting more 
difficult because interactions among threads and data.

Attr: Samuele Resca

https://samueleresca.net/about
https://samueleresca.net/about


We Live An Ironic Moment In History

• In one hand, we (together with LLMs) are producing more code than ever.

• On the other hand, software is increasingly slow; or, if you want, it is 
increasingly difficult to get the most out of modern CPUs and GPUs 
(because of their complexity).

• Conclusion: We are producing suboptimal code at a rate never seen 
before!

Solution: stand on the shoulders of efficient libraries!



Blosc2
Better compression for multidimensional, binary data

https://www.blosc.org/

https://www.blosc.org/


What Is Blosc2?

A set of codecs and filters to compress data, orchestrated in a way 
that leverages modern computer architecture:

• Support for multithreading: use the full cores in your CPU.

• Automatically use of modern SIMD instructions (SSE2, AVX2, 
AVX512, NEON, ALTIVEC) for performance.

• Double partitioning, mimicking the multi-level caches in modern 
CPUs, and adapted to their sizes automatically.

• In-memory or on-disk storage.

https://github.com/Blosc/c-blosc2

https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2


Blosc2 Architecture
✓ 64-bit containers

✓ Metalayers for adding 
info for apps and users

✓ Blosc2 NDim: Multi-dim 
blocks and chunks
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https://www.blosc.org/posts/blosc2-ndim-intro/
https://www.blosc.org/posts/blosc2-ndim-intro/


Different Codecs and Filters

How to predict the best combination?
https://ironarray.io/btune

https://ironarray.io/btune
https://ironarray.io/btune
https://ironarray.io/btune
https://ironarray.io/btune


Blosc2: Compute Engine
Compute with your big compressed arrays, fast!



Blosc2 Compute Engine: Computing 
With Compressed Data, Transparently
For optimal speed, it's crucial to understand and utilize modern CPU capabilities:

• Multicore processing

• SIMD

• Cache hierarchies

N = 1000_000
a = blosc2.linspace(0, 1, N * N, shape=(N, N))
b = blosc2.linspace(1, 2, N * N, shape=(N, N))
c = blosc2.linspace(0, 1, N, shape=(N,)) # 1D; broadcasting supported
# Blosc2 NDArrays override NumPy's universal functions (ufuncs)
out = np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1)

https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays

https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays


Efficient Compressed Computing



Going Bigger: Computing Beyond RAM

https://ironarray.io/blog/compute-bigger

https://ironarray.io/blog/compute-bigger
https://ironarray.io/blog/compute-bigger
https://ironarray.io/blog/compute-bigger


Blosc2: TreeStore
Endow a structure to your data, effortlessly

Blog: https://www.blosc.org/posts/new-treestore-blosc2/

https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/


Hierarchical 
Structures blosc2.TreeStore

New in Python-Blosc2 3.7.0  

Currently in beta stage.

Sprinting tomorrow, join us!

with blosc2.TreeStore("example_tree.b2z", mode="w") as tstore:
    tstore["/data"] = np.array([1, 2, 3])  # numpy array
    tstore["/dir1/data1"] = blosc2.ones(1e6, shape=(100, 100, 100)) # blosc2 array
    tstore["/dir1/data2"] = blosc2.linspace(0, 1, 1e6, shape=(1000, 1000))
    tstore.vlmeta["author"] = "blosc2”  # metadata (persists with the store)

with blosc2.TreeStore("example_tree.b2z", mode="r") as tstore2:
    print("/dir1/data2:", tstore2["/dir1/data2"][:])

dir1

root

data

data1 data2

https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0
https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0
https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0


Bench on MacBook Air, M2 CPU, 8 threads (default)



Bench on MacBook Air, M2 CPU, 1 thread (forced)



Bring Computation Closer To Where Data Is Stored



Data Is Affected By Physical Laws!

Local computer 

Cloud 

100 MB

100 GB

100 TB

Easy Possible No way!
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Storage Tools

Computation Needs To Be Closer To
Were Data Is Stored



Serving data through Internet
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Python API

User

ProcessorStorage

Tools Server
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https://ironarray.io/caterva2

https://github.com/ironArray/Caterva2

https://ironarray.io/caterva2
https://github.com/ironArray/Caterva2


Conclusion



Blosc2 And Its Ecosystem:
Tooling For Modern Computing

Python-Blosc2:
• Efficient compression and adaptability: Compress better

• Computation intertwined with compression: Compute bigger

Caterva2:
• Bring these to the cloud, with easy: Share faster 

Don’t worry (too much) about performance,
use Blosc2 ecosystem, and do your thing!



Thanks to Donors 
& Contracts!

Jeff
Hammerbacher



Thanks! Questions?

Compress Better, Compute Bigger, Share Faster

blosc@blosc.org
contact@ironarray.io
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