
Python-Blosc2
Compress Better, Compute Bigger!

Francesc Alted / @FrancescAlted@masto.social

The Blosc Development Team / @Blosc2@fosstodon.org

CEO / francesc@ironArray.io

EuroSciPy 2025 -- Kraków, Poland
August 21st 2024

Agenda

How Physics Laws Affect Data Science

Compressing Better

Computing Bigger

Caterva2: Sharing Faster

Who is ironArray SLU?

• We are the developers of PyTables, numexpr and Blosc libraries.

• Team of experts empowering you to harness the full potential of
compression for big data: we are here to help!

https://ironarray.io

https://ironarray.io/

Intro
How Physics Laws Affect Data Science

Energy Consumption of the Transistor

The Power Wall: as transistors got smaller, they didn't proportionally reduce
their power consumption as expected.

Power ∝ V² × f
V: voltage
f: frequency

Power Wall Consequences

Source:
Performance Analysis and
Tuning on Modern CPUs
By Denis Bakhvalov

https://products.easyperf.net/perf-book-2
https://products.easyperf.net/perf-book-2

The Shift to More Transistors

Instead of faster single cores, manufacturers now focus on:

• Multiple cores for parallel processing.

• Specialized processing units (GPUs, AI accelerators, dedicated media
processors).

• Hardware acceleration for specific tasks (e.g. compression via Intel QAT).

• Larger caches to reduce memory bottlenecks.

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-qat.html

CPUs Have Become Complex Beasts!

Intel Alder Lake

Memory Is Getting More Complex Too!

• Memory caches are closer to the CPU and hence, are faster. However, they
should be smaller due to power dissipation constraints.

• Efficient access to memory from multi-threaded applications is getting more
difficult because interactions among threads and data.

Attr: Samuele Resca

https://samueleresca.net/about
https://samueleresca.net/about

We Live An Ironic Moment In History

• In one hand, we (together with LLMs) are producing more code than ever.

• On the other hand, software is increasingly slow; or, if you want, it is
increasingly difficult to get the most out of modern CPUs and GPUs
(because of their complexity).

• Conclusion: We are producing suboptimal code at a rate never seen
before!

Solution: stand on the shoulders of efficient libraries!

Blosc2
Better compression for multidimensional, binary data

https://www.blosc.org/

https://www.blosc.org/

What Is Blosc2?

A set of codecs and filters to compress data, orchestrated in a way
that leverages modern computer architecture:

• Support for multithreading: use the full cores in your CPU.

• Automatically use of modern SIMD instructions (SSE2, AVX2,
AVX512, NEON, ALTIVEC) for performance.

• Double partitioning, mimicking the multi-level caches in modern
CPUs, and adapted to their sizes automatically.

• In-memory or on-disk storage.

https://github.com/Blosc/c-blosc2

https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2
https://github.com/Blosc/python-blosc2

Blosc2 Architecture
✓ 64-bit containers

✓ Metalayers for adding
info for apps and users

✓ Blosc2 NDim: Multi-dim
blocks and chunks

App1

App2

Header:
Fixed Length
Metalayers

Data:
Super-Chunk

Trailer:
Var Length
Metalayers
(up to 2 GB)

Chunk 1

Block 1

Block 2

...

Block N

Chunk N

.

.

. Block 1

Block 2

...

Block N

vlmeta1

vlmeta2

vlmeta3

https://www.blosc.org/posts/blosc2-ndim-intro/
https://www.blosc.org/posts/blosc2-ndim-intro/

Different Codecs and Filters

How to predict the best combination?
https://ironarray.io/btune

https://ironarray.io/btune
https://ironarray.io/btune
https://ironarray.io/btune
https://ironarray.io/btune

Blosc2: Compute Engine
Compute with your big compressed arrays, fast!

Blosc2 Compute Engine: Computing
With Compressed Data, Transparently
For optimal speed, it's crucial to understand and utilize modern CPU capabilities:

• Multicore processing

• SIMD

• Cache hierarchies

N = 1000_000
a = blosc2.linspace(0, 1, N * N, shape=(N, N))
b = blosc2.linspace(1, 2, N * N, shape=(N, N))
c = blosc2.linspace(0, 1, N, shape=(N,)) # 1D; broadcasting supported
Blosc2 NDArrays override NumPy's universal functions (ufuncs)
out = np.sum(((a ** 3 + np.sin(a * 2)) < c) & (b > 0), axis=1)

https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays

https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays
https://www.blosc.org/python-blosc2/getting_started/overview.html#computing-with-ndarrays

Efficient Compressed Computing

Going Bigger: Computing Beyond RAM

https://ironarray.io/blog/compute-bigger

https://ironarray.io/blog/compute-bigger
https://ironarray.io/blog/compute-bigger
https://ironarray.io/blog/compute-bigger

Blosc2: TreeStore
Endow a structure to your data, effortlessly

Blog: https://www.blosc.org/posts/new-treestore-blosc2/

https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/
https://www.blosc.org/posts/new-treestore-blosc2/

Hierarchical
Structures blosc2.TreeStore

New in Python-Blosc2 3.7.0

Currently in beta stage.

Sprinting tomorrow, join us!

with blosc2.TreeStore("example_tree.b2z", mode="w") as tstore:
 tstore["/data"] = np.array([1, 2, 3]) # numpy array
 tstore["/dir1/data1"] = blosc2.ones(1e6, shape=(100, 100, 100)) # blosc2 array
 tstore["/dir1/data2"] = blosc2.linspace(0, 1, 1e6, shape=(1000, 1000))
 tstore.vlmeta["author"] = "blosc2” # metadata (persists with the store)

with blosc2.TreeStore("example_tree.b2z", mode="r") as tstore2:
 print("/dir1/data2:", tstore2["/dir1/data2"][:])

dir1

root

data

data1 data2

https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0
https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0
https://www.blosc.org/python-blosc2/release_notes/index.html#changes-from-3-6-1-to-3-7-0

Bench on MacBook Air, M2 CPU, 8 threads (default)

Bench on MacBook Air, M2 CPU, 1 thread (forced)

Bring Computation Closer To Where Data Is Stored

Data Is Affected By Physical Laws!

Local computer

Cloud

100 MB

100 GB

100 TB

Easy Possible No way!

Team

WorldProcessor

Storage Tools

Computation Needs To Be Closer To
Were Data Is Stored

Serving data through Internet

R
ES

T
A

P
I

Web interface

Caterva2
Python API

User

ProcessorStorage

Tools Server

Client

https://ironarray.io/caterva2

https://github.com/ironArray/Caterva2

https://ironarray.io/caterva2
https://github.com/ironArray/Caterva2

Conclusion

Blosc2 And Its Ecosystem:
Tooling For Modern Computing

Python-Blosc2:
• Efficient compression and adaptability: Compress better

• Computation intertwined with compression: Compute bigger

Caterva2:
• Bring these to the cloud, with easy: Share faster

Don’t worry (too much) about performance,
use Blosc2 ecosystem, and do your thing!

Thanks to Donors
& Contracts!

Jeff
Hammerbacher

Thanks! Questions?

Compress Better, Compute Bigger, Share Faster

blosc@blosc.org
contact@ironarray.io

	Slide 1: Python-Blosc2 Compress Better, Compute Bigger!
	Slide 2: Agenda
	Slide 3: Who is ironArray SLU?
	Slide 4: Intro
	Slide 5: Energy Consumption of the Transistor
	Slide 6: Power Wall Consequences
	Slide 7: The Shift to More Transistors
	Slide 8: CPUs Have Become Complex Beasts!
	Slide 9: Memory Is Getting More Complex Too!
	Slide 11: We Live An Ironic Moment In History
	Slide 12: Blosc2
	Slide 13: What Is Blosc2?
	Slide 14: Blosc2 Architecture
	Slide 15: Different Codecs and Filters
	Slide 16: Blosc2: Compute Engine
	Slide 17: Blosc2 Compute Engine: Computing With Compressed Data, Transparently
	Slide 18: Efficient Compressed Computing
	Slide 19: Going Bigger: Computing Beyond RAM
	Slide 20: Blosc2: TreeStore
	Slide 21: Hierarchical Structures
	Slide 22: Bench on MacBook Air, M2 CPU, 8 threads (default)
	Slide 23: Bench on MacBook Air, M2 CPU, 1 thread (forced)
	Slide 24:
	Slide 25: Data Is Affected By Physical Laws!
	Slide 26: Computation Needs To Be Closer To Were Data Is Stored
	Slide 27: Serving data through Internet
	Slide 28: Conclusion
	Slide 29: Blosc2 And Its Ecosystem: Tooling For Modern Computing
	Slide 30: Thanks to Donors & Contracts!
	Slide 31: Thanks! Questions?

