
PyTables

Processing And Analyzing
Extremely Large Amounts Of Data

In Python

Francesc Alted
falted@imk.es

PyCon Convention, 28 March, 2003, Wahington DC

 Outline

 What is PyTables and why it exists?

 Interactive demonstration

 Some benchmarks

 Final remarks

 Motivation

 Many scientific applications need to save and read very large
amounts of data. Analysing this data effectively is a challenge.

 Computers are powerful enough to deal with very large data sets.
But, the question is: can people handle very large data sets?

 Requirements:
 Analysis is an iterative process: interactivity
 Re-reading many times the data: efficency
 Good framework to give the data an structure
 Easy management

 PyTables is a Python package designed with these requirements
in mind!

 What PyTables offers?

 Interactivity
 The user can take immediate action based on previous feedback
 This greatly accelerates the process of data mining

 Efficiency
 Improves your productivity
 Very important when interactivity is an issue

 Hierarchical structure
 It allows to break your data into smaller, related chunks
 It offers you an intuitive way to categorize data

 Object-oriented interface
 Datasets become objects that can be easily manipulated
 In a hierarchical structure, objects facilitate data browsing

 Machinery behind PyTables

 PyTables relies on powerful software to achieve its goals:

 Python -- Everyone here knows that (2.2 version needed because
generators are heavily used)

 HDF5 -- general purpose library and file format for storing
scientific data

 numarray -- next generation of the well-known Numerical Python
package

 Pyrex -- Tool to make Python extensions with a Python-like syntax

 What is HDF5?

 It is a general purpose library and file format for storing
 scientific data in a hierarchical manner. It is developed and
 maintained at the NCSA.

 Can store two primary objects: datasets and groups
 Dataset: multidimensional array of data elements
 Group: Structure for organinzing objects in the HDF5 file

 Very flexible and well tested in scientific environments

 Officially supported API’s: C, Fortran and Java

 Being already used in: Meteorology, Oceanography, Astronomy,
Astrophysics, Numerical simulation and many others

 PyTables highlights

 General Python library to deal with scientific data

 Support of Numerical Python and numarray objects

 Appendable tables

 Can read generic HDF5 files

 Data compression support (for tables)

 Support of files bigger than 2 GB (unlimited data size in practice)

 Architecture-independent (is aware of big/low endian issues)

 A first example

idnumber identity speed

0
1
2
3
4
5
6
7
8
9

Particle id: 0
Particle id: 1
Particle id: 2
Particle id: 3
Particle id: 4
Particle id: 5
Particle id: 6
Particle id: 7
Particle id: 8
Particle id: 9

 0
 2
 4
 6
 8
10
12
14
16
18

table

group

Root

array2

1 2 3 4

array1

0.1 0.2 0.3 0.4

 The PyTables code

 from tables import *

 class Particle(IsDescription):
 identity = Col("CharType", 16, " ", pos = 0) # character String
 speed = Col("Float32", 1, pos = 2) # single-precision
 idnumber = Col("Int16", 1, pos = 1) # short integer

 fileh = openFile("example.h5", mode = "w")
 array = fileh.createArray(fileh.root, "array1", [.1,.2,.3,.4], "Float array")
 group = fileh.createGroup(fileh.root, "group")
 table = fileh.createTable(group, "table", Particle, "Table with 3 fields")
 array = fileh.createArray(group, "array2", [1,2,3,4], "Int array")
 row = table.row
 for i in xrange(10):
 row[’identity’] = ’Particle id: %3d’ % (i)
 row[’idnumber’] = i
 row[’speed’] = i * 2.
 row.append()

 fileh.close()

 First example output

 $ h5ls -rd example.h5
 /array1 Dataset {4}
 Data:
 (0) 0.1, 0.2, 0.3, 0.4
 /group Group
 /group/array2 Dataset {4}
 Data:
 (0) 1, 2, 3, 4
 /group/table Dataset {10/Inf}
 Data:
 (0) {0, "Particle id: 0", 0}, {1, "Particle id: 1", 2},
 (2) {2, "Particle id: 2", 4}, {3, "Particle id: 3", 6},
 (4) {4, "Particle id: 4", 8}, {5, "Particle id: 5", 10},
 (6) {6, "Particle id: 6", 12}, {7, "Particle id: 7", 14},
 (8) {8, "Particle id: 8", 16}, {9, "Particle id: 9", 18}

 The object tree

fileObject(File)
+name: string = "example.h5"
+root: Group = groupRootObject
+open(filename:string)
+newGroup(where:Group,name:string): Group
+newTable(where:Group,name:string,description:IsDescription): Table
+newArray(where:Group,name:string,object:array): Array
+close()

groupRootObject(Group)
+_v_name: string = root
+group: Group = groupObject
+array1: Array = arrayObject1

arrayObject1(Array)
+name: string = array1
+read(): Array

tableObject(Table)
+name: string = table1
+row: Row = rowObject
+read(): Table

rowObject(Row)
+identity: CharType
+idnumber: Int16
+speed: Float32
+append()
+nrow()

groupObject(Group)
+_v_name: string = group2
+table: Table = tableObject
+array2: Array = arrayObject2

arrayObject2(Array)
+name: string = array2
+read(): Array

 How fast is fast?

 Several benchmarks have been conducted in order to know if
PyTables is competitive with existing tools to save data
persistently.

 Comparisons has been made with cPickle, struct, shelve and
SQLite (a relational database).

 The benchmarks tested writing and selecting table data that fulfill
a series of conditions.

 Two basic parameters where changed in each test to
comparatively measure I/O performance:

 The row size
 The number of rows in the table

 The record descriptions

 The record sizes used are of two different lengths:

 16 Bytes
 class Small(IsDescription):
 var1 = Col("CharType", 4, "")
 var2 = Col("Int32", 1, 0)
 var3 = Col("Float64", 1, 0)

 56 bytes
 class Medium(IsDescription):
 name = Col("CharType", 16, "")
 float1 = Col("Float64", 2, NA.arange(2))
 ADCcount = Col("Int32", 1, 0)
 grid_i = Col("Int32", 1, 0)
 grid_j = Col("Int32", 1, 0)
 pressure = Col("Float32", 1, 0)
 energy = Col("Float64", 1, 0)

 The selection mechanism

 PyTables:
 e = [p[’var1’] for p in table.iterrows()
 if p[’var2’] < 20]

 cPickle:
 while rec:
 record = cPickle.loads(rec[1])
 if record[’var2’] < 20:
 e.append(record[’var1’])
 struct:
 while rec:
 record = struct.unpack(isrec._v_fmt, rec[1])
 if record[1] < 20:
 e.append(record[0])

 SQLite:
 cursor.execute("select var1 from table where var2 < 20")

 Note: cPickle and struct tests use a RECNO Berkeley DB (4.1.3 version) in order to
emulate records efficently.

 Benchmark platform description

 Laptop with Pentium IV @ 2 GHz and 256 MB RAM

 Disk IDE @ 4200 RPM

 PyTables 0.4

 HDF5 1.4.5

 numarray 0.4

 Linux Debian 3.0

 GCC 2.95 compiler

 Comparing cPikle and struct with PyTables

 Conclusions from first benchmark (cPickle &
struct)

 Writing
 Between 20 and 30 times faster than cPickle
 Between 3 and 10 time faster than struct

 Reading
 Around 100 times faster than cPickle
 Around 10 times faster than struct

 PyTables is far superior to cPickle and struct for any amount of data

 Comparing SQLite with PyTables (tabular values)

 Comparing SQLite with PyTables (writing)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7 8 9

Kro
w/s

log(nrows)

Writing with small record size (16 bytes)

PyTables & psyco
PyTables & no psyco

sqlite

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9

Kro
w/s

log(nrows)

Writing with medium record size (56 bytes)

PyTables & psyco
PyTables & no psyco

sqlite

 Comparing SQLite with PyTables (selecting)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9

Kro
w/s

log(nrows)

Selecting with small record size (16 bytes)

PyTables & psyco
PyTables & no psyco

sqlite

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9

Kro
w/s

log(nrows)

Selecting with medium record size (56 bytes)

PyTables & psyco
PyTables & no psyco

sqlite

 Conclusions from second benchmark (SQLite)

 Writing
 PyTables is around 100 times faster than SQLite
 Caveat: I did not attempt to optimize SQLite for inserts

 Reading
 In-core selects (i.e. file size fits in cache memory)
 PyTables achieves between 60% and 80% of SQLite speed

 Out-of-core selects (i.e. file size do not fit in cache memory)
 PyTables outperforms SQLite by a factor of two (that depends on the kind of

record)

 PyTables beats SQLite when processing very large amounts of data!
 (while being close of it for smaller sizes)

 Current PyTables limitations and plans for future

 Elements in columns can not have more than one dimension

 Attributes in nodes only support string values (but cPikle is there!)

 Unlimited arrays are not supported (perhaps in the next release)

 Compression for arrays not available (will be available when
unlimited arrays are implemented)

 Object elements can not be related to other elements

 Final remarks

 PyTables allows you to process your data interactively and
quickly.

 If you have large amounts of data, an interpreted language like
Python is enough in order to get maximum performance:
PyTables (+ Psyco) is only limited by disk I/O speed.

 PyTables has been designed to excel in retrieving and selecting
data very fast, but is also very fast when writing (I didn’t expect
this result - a welcome surprise).

 PyTables is for real work!

 More than 200 tests units are now incorporated. More will be
added and quality will only improves as PyTables evolves.

 PyTables is already in beta and its API is stable.

 It comes with complete documentation both in doc strings format
as well as a high quality 40 pages user’s manual in PDF and
HTML formats.

 Download the last version (0.4, released on March, 18th) and use
it for free from:

 http://pytables.sourceforge.net

