
Out-of-Core Columnar
Datasets

Introducing bcolz, an In-Memory/On-Disk Columnar, Chunked 
 and Compressed Data Container

Francesc Alted <francesc@blosc.io>
Freelance Trainer And Consultant

!
EuroPython 2014, July 25, Berlin 

About Me
• I am the creator of tools like PyTables, Blosc,

bcolz, and a long-term maintainer of Numexpr

• I am an experienced developer and trainer in:

• Python (almost 15 years of experience)

• High Performance Computing and Storage

• Also available for consulting

What? Yet Another Data
Container?

• We are bound to live in a world of wildly different
instances of data containers

• The NoSQL movement is an example of that

• Why? Mainly because the increasing gap
between CPU and memory speeds

See my article:
“Why Modern CPUs Are Starving And What You Can Do

About It”

CPU vs Memory Speed

Why Columnar?

• When querying tabular data, only the interesting
data is accessed

• Less I/O required

In-memory Row-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 64 bytes (cache line)

}N rows

In-memory Column-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 4 bytes (Int32)

}N rows

Why Chunking?

• Chunking means more difficulty handling data,
so why bother?

• Efficient enlarging and shrinking

• On-flight compression possible

Appending Data in NumPy

Copy!

Array to be 
 enlarged

Final array 
 object

Data to append
New memory 

 allocation
• Both memory areas have to exist simultaneously

Appending Data in bcolz
Final carray object

chunk 1

chunk 2

new chunk(s)

carray to be enlarged

chunk 1

chunk 2

data to append

X
Compress

• Only a compression operation on new data is required

Why Compression (I)?

Compressed Dataset

Original Dataset

3x more data

More data can be stored in the same amount of media

Why Compression (II)?
Less data needs to be transmitted to the CPU

Disk or Memory Bus

Decompression

Disk or Memory (RAM)

CPU Cache

Original 
 Dataset

Compressed 
 Dataset

Transmission + decompression faster than direct transfer?

Blosc: Compressing Faster
Than Memory Speed

bcolz: Goals and
Implementation

–KISS Principle

“Keep It Simple, Stupid”

Feature inclusion driven by the:

What bcolz Is?

• Columnar, chunked, compressed data
containers for Python

• Offers `carray ` and `ctable` container flavors

• Uses the powerful Blosc compression library for
on-the-flight compression/decompression

• 100% written in Python/Cython

carray: Multidimensional
Container for Homogeneous Data

...

NumPy container carray container

chunk 1

chunk 2

chunk N

Contiguous Memory Discontiguous Memory

The ctable Object

.

.

.

.

.

.

.

.

.

.

.

.

chunk
carray

new rows to append

• Chunks follow column order
• Very efficient for querying
• Adding or removing columns is cheap too

Persistency

• carray and ctable objects can live on disk, not
only in memory

• The format for persistency is heavily based in
bloscpack, a nascent library for compressing
large datasets

• bcolz allows every operation to be executed
entirely on-disk (out-of-core operations)

Streaming Analytics With
bcolz

bcolz container
(disk or memory)

iter(), iterblocks(), 
where(), whereblocks(),

__getitem__()

map(), filter(),
 groupby(), sortby(),

reduceby(), 
join()

bcolz 
 iterators/filters
with blocking

itertools,
PyToolz,
CyToolz

Interacting with Neighbors

bcolz

• Relational Databases
• CSV files
• HDF5/PyTables
• Excel

• HDF5 format
• Indexed queries
• Long term storage
• Blosc support

Some Benchmarks With Real Data:  
The MovieLens Dataset 

Materials in: 
https://github.com/Blosc/movielens-bench

The MovieLens Dataset

• Datasets for movie ratings

• Different sizes: 100K, 1M, 10M ratings (the 10M
will be used in benchmarks ahead)

• The datasets were collected over various
periods of time

Querying the MovieLens
Dataset

import pandas as pd 
import bcolz

Parse and load CSV files using pandas

Merge some files in a single dataframe 
lens = pd.merge(movies, ratings)

The pandas way of querying 
result = lens.query("(title == 'Tom and Huck (1995)') & (rating == 5)”)['user_id']

zlens = bcolz.ctable.fromdataframe(lens)

The bcolz way of querying (notice the use of the `where` iterator) 
result = [r.user_id for r in dblens.where( 
 "(title == 'Tom and Huck (1995)') & (rating == 5)", outcols=['user_id'])]

Sizes of Datasets

• Compression means ~20x less space

• The uncompressed ctable is larger than pandas

Query Times
(laptop 1-year old)

• Compression leads to better query speeds 
(15% faster)

• Querying a disk-based ctable is fast!

Query Times 
(laptop 3-year old, Core2)

• Compression still makes things slower on old
boxes (15% slower)

• So, expect better improvements in the future

Status and Overview
• Version 0.7.0 released this week. Check it out!

• Focus on refining the API and tweaking knobs
for making things even faster

• Better integration with bloscpack (super-chunks)

• bcolz main goal is to demonstrate that
compression can help performance, even using
in-memory data containers

Tell Us About Your
Experience!

• Which is your scenario?

• You are not getting the expected speed or
compression ratio?

• Mailing list: 
 http://groups.google.com/group/bcolz

• Bugs/patches, please file them at: 
http://github.com/Blosc/bcolz

References

• Manual: http://bcolz.blosc.org/

• Bloscpack: https://github.com/Blosc/bloscpack

• The Blosc ecosystem: http://blosc.org/

Thank you!
!

!

Questions?

