
Data Oriented
Programming

or:
 How I Learned to Stop Worrying about CPU Speed

and Love Memory Access

Francesc Alted 
Freelance Trainer And Developer

PyData Conference, Berlin	

 July 26, 2014

Overview

• Motivation	

• The Data Access Issue	

• Why Modern CPUs Are Starving	

• Why Caches?	

• Techniques For Fighting Data Starvation	

• Optimal Containers for Big Data

About Me

• I am the creator of tools like PyTables, Blosc,
bcolz, and a long-term maintainer of Numexpr	

• I am an experienced developer and trainer in:	

• Python (almost 15 years of experience)	

• High Performance Computing and Storage	

• Also available for consulting

Motivation

CPU Speed Is No
Longer The Holy Grail
Supose that we want to compute the next
polynomial:  
 
 
in the range [-1, 1] with a step size of 2*10-7
in the x axis	

...and want to do that as FAST as possible...

0.25x3 + 0.75x2 + 1.5x - 2

Using NumPy

import numpy as np
!
N = 10*1000*1000
!
x = np.linspace(-1, 1, N)
!
y = .25*x**3 + .75*x**2 - 1.5*x - 2

That takes around 1.60 sec on some machine
(Intel Xeon E5520 @ 2.3 GHz). How to make it
faster?

'Quick & Dirty' Approach:
Parallelize

• Computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N
chunks and evaluate the expression for each chunk.	

• This can be easily implemented in Python by using
the multiprocessing module (so as to bypass the GIL). 	

• Using 2 cores, the 1.60 sec is reduced down to 1.18
sec, which is a 1.35x improvement. Not bad.	

• We are done! Or perhaps not?

A Better Approach:
Optimize

The NumPy expression:	

(I) 0.25x3 + 0.75x2 + 1.5x - 2

can be rewritten as:	

(II) ((0.25x + 0.75)x + 1.5)x - 2

• Exec time goes from 1.60 sec to 0.30 sec	

• Much faster (4x) than using two processors
with the multiprocessing approach (1.18 sec).

First Take Away
Message

• Do not blindly try to parallelize right
away: Optimizing normally gives better
results  

And a serial codebase is normally much
easier to code and debug!

Use numexpr
Numexpr is a JIT compiler, based on NumPy,
that optimizes the evaluation of complex
expressions. Usage is simple:	

import numpy as np
import numexpr as ne
N = 10*1000*1000
x = np.linspace(-1, 1, N)
y = ne.evaluate(“.25*x**3 + .75*x**2 - 1.5*x - 2”)

This takes 0.14 sec to complete (11x faster
than the original NumPy: 1.60 sec)

Fine Tuning numexpr

Numexpr is also sensible to computer-
friendly expressions like:	

(II) ((0.25x + 0.75)x + 1.5)x - 2

• This takes 0.11 sec (3x faster than NumPy)	

• 0.14 sec were needed for the original
expression, that's a 25% faster

NumPy

Page 1

.25*x**3 + .75*x**2 - 1.5*x – 2 1,613 0,138

0,301 0,11

x 0,052 0,045

sin(x)**2+cos(x)**2 0,715 0,559

NumPy Numexpr

((.25*x + .75)*x - 1.5)*x – 2

NumPy Numexpr

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

NumPy vs Numexpr (1 thread)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

.25*x**3 + .75*x**2 - 1.5*x – 2 ((.25*x + .75)*x - 1.5)*x – 2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Time to evaluate polynomial (1 thread)

NumPy

Numexpr

T
im

e
 (

s
)

Power Expansion	

Numexpr expands expression:  
 
0.25*x**3 + 0.75*x**2 + 1.5*x - 2

to:

0.25*x*x*x + 0.75*x*x + 1.5*x - 2 
 
so, no need to use the expensive pow()

One Remaining
Question

Why numexpr can execute this expression:	

((0.25x + 0.75)x + 1.5)x - 2

3x faster, even using a single core?	

Short answer: making a more efficient use
of the memory resource

The Starving CPU
Problem

The Starving CPU
Problem

• Current CPUs typically stay bored, doing
nothing most of the time	

• Why so?	

• Because they are basically waiting for data

Memory Access Time
vs CPU Cycle Time

Book in 2009

The Status of CPU
Starvation in 2014

• Memory latency is much slower (between
100x and 500x) than processors.	

• Memory bandwidth is improving at a better
rate than memory latency, but it is also
lagging behind processors (between 30x
and 100x).

CPU Caches to the
Rescue

• CPU cache latency and throughput
are much better than memory	

• However: the faster they run the
smaller they must be

CPU Cache Evolution
Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to
the CPU) are faster but have reduced
capacities and are best suited for per-
forming computations; higher-level
caches are slower but have higher ca-
pacity and are best suited for storage
purposes.

Figure 1 shows the evolution of
this hierarchical memory model over
time. The forthcoming (or should I
say the present?) hierarchical model
includes a minimum of six memory
levels. Taking advantage of such a
deep hierarchy isn’t trivial at all, and
programmers must grasp this fact
if they want their code to run at an
acceptable speed.

Techniques to Fight
Data Starvation
Unlike the good old days when the
processor was the main bottleneck,
memory organization has now be-
come the key factor in optimization.
Although learning assembly language
to get direct processor access is (rela-
tively) easy, understanding how the
hierarchical memory model works—
and adapting your data structures
accordingly—requires considerable
knowledge and experience. Until we
have languages that facilitate the de-
velopment of programs that are aware

of memory hierarchy (for an example
in progress, see the Sequoia project
at www.stanford.edu/group/sequoia),
programmers must learn how to
deal with this problem at a fairly low
level.4

There are some common techniques
to deal with the CPU data-starvation
problem in current hierarchical mem-
ory models. Most of them exploit the
principles of temporal and spatial
locality. In temporal locality, the target
dataset is reused several times over
a short period. The first time the
dataset is accessed, the system must
bring it to cache from slow memory;
the next time, however, the processor
will fetch it directly (and much more
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In
this case, circuits are designed to fetch
memory elements that are clumped
together much faster than if they’re
dispersed. In addition, specialized
circuitry (even in current commodity
hardware) offers prefetching—that is,
it can look at memory-access patterns
and predict when a certain chunk of
data will be used and start to trans-
fer it to cache before the CPU has
actually asked for it. The net result is
that the CPU can retrieve data much
faster when spatial locality is properly
used.

Programmers should exploit the op-
timizations inherent in temporal and
spatial locality as much as possible.
One generally useful technique that
leverages these principles is the block-
ing technique (see Figure 2). When
properly applied, the blocking tech-
nique guarantees that both spatial and
temporal localities are exploited for
maximum benefit.

Although the blocking technique
is relatively simple in principle, it’s
less straightforward to implement
in practice. For example, should the
basic block fit in cache level one,
two, or three? Or would it be bet-
ter to fit it in main memory—which
can be useful when computing large,
disk-based datasets? Choosing from
among these different possibilities
is difficult, and there’s no substitute
for experimentation and empirical
analysis.

In general, it’s always wise to use
libraries that already leverage the
blocking technique (and others) for
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is
a virtual machine written in Python
and C that lets you evaluate poten-
tially complex arithmetic expressions
over arbitrarily large arrays. Using the
blocking technique in combination

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade:
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.

Mechanical disk Mechanical disk Mechanical disk

Speed
C

ap
ac

ity

Solid state disk

Main memory

Level 3 cache

Level 2 cache

Level 1 cache

Level 2 cache

Level 1 cache

Main memoryMain memory

CPUCPU

(a) (b) (c)

Central
processing
unit (CPU)

CISE-12-2-ScientificPro.indd 3 1/29/10 11:21:43 AM

When CPU Caches Are
Effective?

!

Mainly in a couple of scenarios:	

• Time locality: when the dataset is
reused	

• Spatial locality: when the dataset is
accessed sequentially

Time Locality

Spatial Locality

The Blocking Technique















Use this extensively to leverage
spatial and temporal localities

When accessing disk or memory, get a contiguous block that fits
in CPU cache, operate upon it and reuse it as much as possible.

Time To Answer
Pending Questions

NumPy

Page 1

.25*x**3 + .75*x**2 - 1.5*x – 2 1,613 0,138

0,301 0,11

x 0,052 0,045

sin(x)**2+cos(x)**2 0,715 0,559

NumPy Numexpr

((.25*x + .75)*x - 1.5)*x – 2

NumPy Numexpr

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

NumPy vs Numexpr (1 thread)

.25*x**3 + .75*x**2 - 1.5*x – 2

((.25*x + .75)*x - 1.5)*x – 2

x

sin(x)**2+cos(x)**2

T
im

e
 (

s
)

.25*x**3 + .75*x**2 - 1.5*x – 2 ((.25*x + .75)*x - 1.5)*x – 2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Time to evaluate polynomial (1 thread)

NumPy

Numexpr

T
im

e
 (

s
)

� � � �����

���

���
���	

���
�����������������	����������
�
�����
����
������
�����

�
����

   










Second Message of the
Day

• Before spending too much time optimizing
by yourself make you a favor:  
 
Use the existing, powerful libraries out
there  

It is pretty difficult to beat performance
professionals!

Optimal Containers for
Big Data

The Need for a Good
Data Container

• Too many times we are focused on
computing as fast as possible	

• But we have seen how important data
access is	

• Hence, having an optimal data structure is
critical for getting good performance when
processing very large datasets

No Silver Bullet

• Unfortunately, there is not (and probably
will never be) a fit-all data container	

• We need to make our mind to the fact that
we need to choose the ‘optimal’ container
for our case

NumPy: A De Facto
Data Container

NumPy is the standard de facto in-memory
container for Big Data applications in the
Python universe

�����

������

������

���	�
�

��������	��
���������
����

NumPy Advantages

• Multidimensional data container	

• Efficient data access for many scenarios	

• Powerful weaponry for data handling	

• Efficient in-memory storage

Nothing Is Perfect

• The NumPy container is just great for many
use cases	

• However, it also has its own deficiencies:	

• Not efficient for appending data (so data
containers tend to be static)	

• Cannot deal with compressed data transparently	

• Limited disk-based data support 

Appending Data in
Large NumPy Objects

Copy!

New memory	

allocation

array to be enlarged final array object

new data to append

• Normally a realloc() syscall will not succeed	

• Both memory areas have to exist simultaneously

bcolz  
Overcoming NumPy

Limitations

bcolz

• Columnar, chunked, compressed data
containers for Python	

• Offers carray and ctable container flavors	

• Implements just a few simple, but fast
iterators over the containers, supporting
query semantics	

• Uses the powerful Blosc compressor under
the hood

Why Columnar?

• When querying tabular data, only the
interesting data is accessed	

• Less I/O required

In-Memory Row-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	

Actual Data Read: N * 64 bytes (cache line)

}N rows

In-Memory Column-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	

Actual Data Read: N * 4 bytes (Int32)

}N rows

Why Chunking?

• Chunking means more difficulty handling
data, so why bother?	

• Efficient enlarging and shrinking	

• On-flight compression possible

Copy!

Array to be  
 enlarged

Final array  
 object

Data to append
New memory 

 allocation
• Both memory areas have to exist simultaneously

Appending Data in NumPy

Appending Data in bcolz
Final carray object

chunk 1

chunk 2

new chunk(s)

carray to be enlarged

chunk 1

chunk 2

data to append

X

Compress

• Only a compression operation on new data is required

Why Compression (I)?

Compressed Dataset

Original Dataset

3x more data

More data can be stored in the same amount of media

Why Compression (II)?
Less data needs to be transmitted to the CPU

Disk or Memory Bus

Decompression

Disk or Memory (RAM)

CPU Cache

Original  
 Dataset

Compressed 
 Dataset

Transmission + decompression faster than direct transfer?

Blosc: Compressing Faster
Than Memory Speed

Streaming Analytics with bcolz

bcolz container	

(disk or memory)

iter(), iterblocks(),  
where(), whereblocks(),	

__getitem__()

map(), filter(),	

 groupby(), sortby(),	

reduceby(),  
join()

bcolz 
 iterators/filters	

with blocking

itertools,	

PyToolz,	

CyToolz

Some Benchmarks With Real Data: 
The MovieLens Dataset 

Materials in: 
https://github.com/Blosc/movielens-bench

The MovieLens Dataset

• Datasets for movie ratings	

• Different sizes: 100K, 1M, 10M ratings (the
10M will be used in benchmarks ahead)	

• The datasets were collected over various
periods of time

Querying the
MovieLens Dataset

import pandas as pd 
import bcolz
!
Parse and load CSV files using pandas
…
!
Merge some files in a single dataframe 
lens = pd.merge(movies, ratings)
!
The pandas way of querying 
result = lens.query("(title == 'Tom and Huck (1995)') & (rating == 5)”)
[‘user_id']
!
Get a ctable container
zlens = bcolz.ctable.fromdataframe(lens)
!
The bcolz way of querying (notice the use of the `where` iterator) 
result = [r.user_id for r in dblens.where( 
 "(title == 'Tom and Huck (1995)') & (rating == 5)", outcols=['user_id'])]

Size of Datasets

• Compression means ~20x less space	

• The uncompressed ctable is larger than pandas

bcolz Query
Performance

• Compression leads to better query speeds (15% faster)	

• Querying a disk-based ctable is fast!

Final Take Away
Message for Today

• Big data is tricky to manage:  
 
Look for the optimal containers for your
data  

Spending some time choosing your
appropriate data container can be a big time
saver in the long run

Summary

• Nowadays you should be aware of the
memory hierarchy for getting good
performance	

• Leverage existing memory-efficient libraries
for performing computations optimally	

• Use the appropriate data containers for
your different use cases

References

• Why Modern CPUs Are Starving And What
You Can Do About It	

• bcolz: http://github.com/Blosc/bcolz	

• Blosc ecosystem: http://blosc.io

Thank you!	

!

Questions?	

!

francesc@blosc.io	

@FrancescAlted	

