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Overview

• Motivation	



• The Data Access Issue	



• Why Modern CPUs Are Starving	



• Why Caches?	



• Techniques For Fighting Data Starvation	



• Optimal Containers for Big Data



About Me

• I am the creator of tools like PyTables, Blosc, 
bcolz, and a long-term maintainer of Numexpr	



• I am an experienced developer and trainer in:	



• Python (almost 15 years of experience)	



• High Performance Computing and Storage	



• Also available for consulting



Motivation



CPU Speed Is No 
Longer The Holy Grail
Supose that we want to compute the next 
polynomial:  
 
 
in the range [-1, 1] with a step size of 2*10-7 
in the x axis	



...and want to do that as FAST as possible...

0.25x3 + 0.75x2 + 1.5x - 2



Using NumPy

import numpy as np 
!
N = 10*1000*1000 
!
x = np.linspace(-1, 1, N) 
!
y = .25*x**3 + .75*x**2 - 1.5*x - 2

That takes around 1.60 sec on some machine 
(Intel Xeon E5520 @ 2.3 GHz). How to make it 
faster?



'Quick & Dirty' Approach: 
Parallelize

• Computing a polynomial is “embarrassingly” 
parallelizable: just divide the domain to compute in N 
chunks and evaluate the expression for each chunk.	



• This can be easily implemented in Python by using 
the multiprocessing module (so as to bypass the GIL).  	



• Using 2 cores, the 1.60 sec is reduced down to 1.18 
sec, which is a 1.35x improvement.  Not bad.	



• We are done! Or perhaps not?



A Better Approach: 
Optimize

The NumPy expression:	



(I) 0.25x3 + 0.75x2 + 1.5x - 2 

can be rewritten as:	



(II) ((0.25x + 0.75)x + 1.5)x - 2 

• Exec time goes from 1.60 sec to 0.30 sec	


• Much faster (4x) than using two processors 
with the multiprocessing approach (1.18 sec).



First Take Away 
Message

• Do not blindly try to parallelize right 
away: Optimizing normally gives better 
results  

And a serial codebase is normally much 
easier to code and debug!



Use numexpr
Numexpr is a JIT compiler, based on NumPy, 
that optimizes the evaluation of complex 
expressions.  Usage is simple:	


import numpy as np 
import numexpr as ne 
N = 10*1000*1000 
x = np.linspace(-1, 1, N) 
y = ne.evaluate(“.25*x**3 + .75*x**2 - 1.5*x - 2”) 

This takes 0.14 sec to complete (11x faster 
than the original NumPy: 1.60 sec)



Fine Tuning numexpr

Numexpr is also sensible to computer-
friendly expressions like:	



(II) ((0.25x + 0.75)x + 1.5)x - 2 

• This takes 0.11 sec (3x faster than NumPy)	



• 0.14 sec were needed for the original 
expression, that's a 25% faster



NumPy
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Power Expansion	



Numexpr expands expression:  
 
0.25*x**3 + 0.75*x**2 + 1.5*x - 2 

to: 

0.25*x*x*x + 0.75*x*x + 1.5*x - 2 
 
so,  no need to use the expensive pow()



One Remaining 
Question

Why numexpr can execute this expression:	



((0.25x + 0.75)x + 1.5)x - 2 

3x faster, even using a single core?	



Short answer: making a more efficient use 
of the memory resource



The Starving CPU 
Problem



The Starving CPU 
Problem

• Current CPUs typically stay bored, doing 
nothing most of the time	



• Why so?	



• Because they are basically waiting for data



Memory Access Time 
vs CPU Cycle Time



Book in 2009



The Status of CPU 
Starvation in 2014

• Memory latency is much slower (between 
100x and 500x) than processors.	



• Memory bandwidth is improving at a better 
rate than memory latency, but it is also 
lagging behind processors (between 30x 
and 100x).



CPU Caches to the 
Rescue

• CPU cache latency and throughput 
are much better than memory	



• However: the faster they run the 
smaller they must be



CPU Cache Evolution
Up to end 80’s 90’s and 2000’s 2010’s

MARCH/APRIL 2010 3

implemented several memory lay-
ers with different capabilities: lower-
level caches (that is, those closer to 
the CPU) are faster but have reduced 
capacities and are best suited for per-
forming computations; higher-level 
caches are slower but have higher ca-
pacity and are best suited for storage 
purposes.

Figure 1 shows the evolution of 
this hierarchical memory model over 
time. The forthcoming (or should I 
say the present?) hierarchical model 
includes a minimum of six memory 
levels. Taking advantage of such a 
deep hierarchy isn’t trivial at all, and 
programmers must grasp this fact 
if they want their code to run at an  
acceptable speed.

Techniques to Fight  
Data Starvation 
Unlike the good old days when the 
processor was the main bottleneck, 
memory organization has now be-
come the key factor in optimization. 
Although learning assembly language 
to get direct processor access is (rela-
tively) easy, understanding how the 
hierarchical memory model works—
and adapting your data structures 
accordingly—requires considerable 
knowledge and experience. Until we 
have languages that facilitate the de-
velopment of programs that are aware 

of memory hierarchy (for an example 
in progress, see the Sequoia project 
at www.stanford.edu/group/sequoia), 
programmers must learn how to 
deal with this problem at a fairly low 
level.4 

There are some common techniques 
to deal with the CPU data-starvation 
problem in current hierarchical mem-
ory models. Most of them exploit the 
principles of temporal and spatial  
locality. In temporal locality, the target 
dataset is reused several times over 
a short period. The first time the 
dataset is accessed, the system must 
bring it to cache from slow memory; 
the next time, however, the processor 
will fetch it directly (and much more 
quickly) from the cache.

In spatial locality, the dataset is ac-
cessed sequentially from memory. In 
this case, circuits are designed to fetch 
memory elements that are clumped 
together much faster than if they’re 
dispersed. In addition, specialized 
circuitry (even in current commodity 
hardware) offers prefetching—that is, 
it can look at memory-access patterns 
and predict when a certain chunk of 
data will be used and start to trans-
fer it to cache before the CPU has  
actually asked for it. The net result is 
that the CPU can retrieve data much 
faster when spatial locality is properly 
used.

Programmers should exploit the op-
timizations inherent in temporal and 
spatial locality as much as possible. 
One generally useful technique that 
leverages these principles is the block-
ing technique (see Figure 2). When 
properly applied, the blocking tech-
nique guarantees that both spatial and 
temporal localities are exploited for 
maximum benefit.

Although the blocking technique 
is relatively simple in principle, it’s 
less straightforward to implement 
in practice. For example, should the 
basic block fit in cache level one, 
two, or three? Or would it be bet-
ter to fit it in main memory—which 
can be useful when computing large, 
disk-based datasets? Choosing from 
among these different possibilities 
is difficult, and there’s no substitute 
for experimentation and empirical 
analysis.

In general, it’s always wise to use 
libraries that already leverage the 
blocking technique (and others) for 
achieving high performance; exam-
ples include Lapack (www.netlib.org/
lapack) and Numexpr (http://code.
google.com/p/numexpr). Numexpr is 
a virtual machine written in Python 
and C that lets you evaluate poten-
tially complex arithmetic expressions 
over arbitrarily large arrays. Using the 
blocking technique in combination 

Figure 1. Evolution of the hierarchical memory model. (a) The primordial (and simplest) model; (b) the most common current 
implementation, which includes additional cache levels; and (c) a sensible guess at what’s coming over the next decade: 
three levels of cache in the CPU and solid state disks lying between main memory and classical mechanical disks.
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When CPU Caches Are 
Effective?

!

Mainly in a couple of scenarios:	



• Time locality: when the dataset is 
reused	



• Spatial locality: when the dataset is 
accessed sequentially



Time Locality



Spatial Locality



The Blocking Technique















Use this extensively to leverage 
spatial and temporal localities

When accessing disk or memory, get a contiguous block that fits 
in CPU cache, operate upon it and reuse it as much as possible.



Time To Answer 
Pending Questions
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Second Message of the 
Day

• Before spending too much time optimizing 
by yourself make you a favor:  
 
Use the existing, powerful libraries out 
there  

It is pretty difficult to beat performance 
professionals!



Optimal Containers for 
Big Data



The Need for a Good 
Data Container

• Too many times we are focused on 
computing as fast as possible	



• But we have seen how important data 
access is	



• Hence, having an optimal data structure is 
critical for getting good performance when 
processing very large datasets



No Silver Bullet

• Unfortunately, there is not (and probably 
will never be) a fit-all data container	



• We need to make our mind to the fact that 
we need to choose the ‘optimal’ container 
for our case



NumPy: A De Facto 
Data Container

NumPy is the standard de facto in-memory 
container for Big Data applications in the 
Python universe
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NumPy Advantages

• Multidimensional data container	



• Efficient data access for many scenarios	



• Powerful weaponry for data handling	



• Efficient in-memory storage



Nothing Is Perfect

• The NumPy container is just great for many 
use cases	



• However, it also has its own deficiencies:	



• Not efficient for appending data (so data 
containers tend to be static)	



• Cannot deal with compressed data transparently	



• Limited disk-based data support 



Appending Data in 
Large NumPy Objects

Copy!

New memory	


allocation

array to be enlarged final array object

new data to append

• Normally a realloc() syscall will not succeed	


• Both memory areas have to exist simultaneously



bcolz  
Overcoming NumPy 

Limitations



bcolz

• Columnar, chunked, compressed data 
containers for Python	



• Offers carray and ctable container flavors	



• Implements just a few simple, but fast 
iterators over the containers, supporting 
query semantics	



• Uses the powerful Blosc compressor under 
the hood



Why Columnar?

• When querying tabular data, only the 
interesting data is accessed	



• Less I/O required



In-Memory Row-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	


Actual Data Read: N * 64 bytes (cache line)

}N rows



In-Memory Column-Wise Table

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

String …String Int32 Float64 Int16

Interesting column

Interesting Data: N * 4 bytes (Int32)	


Actual Data Read: N * 4 bytes (Int32)

}N rows



Why Chunking?

• Chunking means more difficulty handling 
data, so why bother?	



• Efficient enlarging and shrinking	



• On-flight compression possible



Copy!

Array to be  
 enlarged

Final array  
 object

Data to append
New memory 

 allocation
• Both memory areas have to exist simultaneously

Appending Data in NumPy



Appending Data in bcolz
Final carray object

chunk 1

chunk 2

new chunk(s)

carray to be enlarged

chunk 1

chunk 2

data to append

X

Compress

• Only a compression operation on new data is required



Why Compression (I)?

Compressed Dataset

Original Dataset

3x more data

More data can be stored in the same amount of media



Why Compression (II)?
Less data needs to be transmitted to the CPU

Disk or Memory Bus

Decompression

Disk or Memory (RAM)

CPU Cache

Original  
 Dataset

Compressed 
 Dataset

Transmission + decompression faster than direct transfer?



Blosc: Compressing Faster 
Than Memory Speed



Streaming Analytics with bcolz

bcolz container	


(disk or memory)

iter(), iterblocks(),  
where(), whereblocks(),	



__getitem__()

map(), filter(),	


 groupby(), sortby(),	



reduceby(),  
join()

bcolz 
 iterators/filters	


with blocking

itertools,	


PyToolz,	


CyToolz



Some Benchmarks With Real Data: 
The MovieLens Dataset 

Materials in: 
https://github.com/Blosc/movielens-bench



The MovieLens Dataset

• Datasets for movie ratings	



• Different sizes: 100K, 1M, 10M ratings (the 
10M will be used in benchmarks ahead)	



• The datasets were collected over various 
periods of time



Querying the 
MovieLens Dataset

import pandas as pd 
import bcolz 
!
# Parse and load CSV files using pandas 
… 
!
# Merge some files in a single dataframe 
lens = pd.merge(movies, ratings) 
!
# The pandas way of querying 
result = lens.query("(title == 'Tom and Huck (1995)') & (rating == 5)”)
[‘user_id'] 
!
# Get a ctable container 
zlens = bcolz.ctable.fromdataframe(lens) 
!
# The bcolz way of querying (notice the use of the `where` iterator) 
result = [r.user_id for r in dblens.where( 
    "(title == 'Tom and Huck (1995)') & (rating == 5)", outcols=['user_id'])] 



Size of Datasets

• Compression means ~20x less space	


• The uncompressed ctable is larger than pandas



bcolz Query 
Performance

• Compression leads to better query speeds (15% faster)	


• Querying a disk-based ctable is fast!



Final Take Away 
Message for Today

• Big data is tricky to manage:  
 
Look for the optimal containers for your 
data  

Spending some time choosing your 
appropriate data container can be a big time 
saver in the long run



Summary

• Nowadays you should be aware of the 
memory hierarchy for getting good 
performance	



• Leverage existing memory-efficient libraries 
for performing computations optimally	



• Use the appropriate data containers for 
your different use cases



References
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Thank you!	


!

Questions?	


!

francesc@blosc.io	


@FrancescAlted	




