Data Oriented
Programming

or:
How | Learned to Stop Worrying about CPU Speed
and Love Memory Access

Francesc Alted
Freelance Trainer And Developer

PyData Conference, Berlin
July 26,2014

Overview

® Motivation

® [he Data Access Issue

® Why Modern CPUs Are Starving
® Why Caches!?
® Techniques For Fighting Data Starvation

® Optimal Containers for Big Data

About Me

® | am the creator of tools like PyTables, Blosc,
bcolz, and a long-term maintainer of Numexpr

® | am an experienced developer and trainer in:
® Python (almost |5 years of experience)
® High Performance Computing and Storage

® Also available for consulting

Motivation

CPU Speed Is No
Longer The Holy Grail

Supose that we want to compute the next
polynomial:
0.25x3 + 0.75x* + 1.5x - 2

in the range [-1, 1] with a step size of 2*10-/
in the x axis

...and want to do that as FAST as possible...

Using NumPy

import numpy as np
N = 10+«1000x1000
X = np.linspace(-1, 1, N)

y = .25%x*k%k3 + .75kxkk2 — 1.5%x - 2

That takes around 1.60 sec on some machine
(Intel Xeon E5520 @ 2.3 GHz). How to make it
faster?

'Quick & Dirty' Approach:
Parallelize

Computing a polynomial is “embarrassingly”
parallelizable: just divide the domain to compute in N
chunks and evaluate the expression for each chunk.

This can be easily implemented in Python by using
the multiprocessing module (so as to bypass the GIL).

Using 2 cores, the 1.60 sec is reduced down to 1.18
sec, which is a |.35x improvement. Not bad.

We are done! Or perhaps not!?

A Better Approach:
Optimize
The NumPy expression:
() 0.25x3 + 0.75x2 + 1.5x - 2
can be rewritten as:

() ((0.25x + 0.75)x + 1.5)x - 2

* Exec time goes from |.60 sec to 0.30 sec
* Much faster (4x) than using two processors
with the multiprocessing approach (1.18 sec).

First Take Away
Message

® Do not blindly try to parallelize right
away: Optimizing normally gives better

results

And a serial codebase is normally much
easier to code and debug!

Use numexpr

Numexpr is a JIT compiler, based on NumPy,
that optimizes the evaluation of complex
expressions. Usage is simple:

import numpy as np
import numexpr as ne

N = 10%x1000%x1000
X = np.linspace(-1, 1, N)
y = ne.evaluate(”.25%x**3 + .75%xx*%2 — 1.5kx — 2")

This takes 0.14 sec to complete (I Ix faster
than the original NumPy: 1.60 sec)

Fine Tuning numexpr

Numexpr is also sensible to computer-
friendly expressions like:

(I) ((0.25x + 0.75)x + 1.5)x - 2

* This takes 0.1 | sec (3x faster than NumPy)

* 0.14 sec were needed for the original
expression, that's a 25% faster

Time (s)

1,8
1,6
1,4
1,2

0,8
0,6
0,4
0,2

Time to evaluate polynomial (1 thread)

25"x**3 + . 75*x**2 -1.5"x - 2

N

((.25*"x + .75)*x - 1.5)"*x — 2

B NumPy
B Numexpr

Power Expansion

Numexpr expands expression:

0.25%kxkk3 + 0.75%kxkx2 + 1.5%x - 2
to:

0.25%xkXxkX + 0.75%xkX + 1.5%x - 2

so, no need to use the expensive pow()

One Remaining
Question

Why numexpr can execute this expression:
((0.25x + 0.75)x + 1.5)x - 2
3x faster, even using a single core!

Short answer: making a more efficient use
of the memory resource

The Starving CPU
Problem

The Starving CPU
Problem

® Current CPUs typically stay bored, doing
nothing most of the time

® Why so!

® Because they are basically waiting for data

Memory Access Time
vs CPU Cycle Time

2002 ~

1000 +
100 =Bl = =
= - - - - - - — — - —

* N St ®s - - -—u

ge]

810- e @

(3] 29 ~

Q v N

(7] A

8 1 \ 2 .

© e

c e S Q@

0.1 4

0'01 LJ LJ L] LJ LJ L] L} L] v LJ LJ LJ
— — — — - — — — — — N N N
({e] ({e] ({e] ({e] ({e] ({e] ({e] ({e] ({e] ({e] o (=] o
(o] (e0] (o0] (e0] o0 (Te] ({e] ({e] (Te] ({e] o o o
N - (3] ~ ({e] - w (3] ~J ({e] -t w (3]

® Memory Access Time ¢ CPU Cycle Time A Multi Core Effective Cycle Time

Book in 2009

% MORGANNCLAYPOOL PUBLISHERS

The Memory System

You Can’t Avoid It
You Can't Ignore 11,
You Can’t Fake It

Bruce Jacob

SYNTHESIS LECTURES ON
CoMPUTER ARCHITECTURE

Mark D. Hill, Series Editor

The Status of CPU
Starvation in 2014

® Memory latency is much slower (between
|00x and 500x) than processors.

® Memory bandwidth is improving at a better
rate than memory latency, but it is also
lagging behind processors (between 30x

and |00x).

CPU Caches to the
Rescue

® CPU cache latency and throughput
are much better than memory

® However: the faster they run the
smaller they must be

CPU Cache Evolution

Up to end 80°s 90’s and 2000’s 2010’s

When CPU Caches Are
Effective!?

Mainly in a couple of scenarios:

® Time locality: when the dataset is
reused

® Spatial locality: when the dataset is
accessed sequentially

Time Locality

Parts of the dataset are reused

Cache

Memory (C array)

Spatial Locality

Dataset is accessed sequentially

Good!

Q|O|®|@®|Linel
Q@O @® @®|Line?2
Bad Cache

Memory (C array)

The Blocking Technique

When accessing disk or memory, get a contiguous block that fits
in CPU cache, operate upon it and reuse it as much as possible.

C = A <oper>B

Dataset A

I

CPU Dataset C

Dataset B Use this extensively to leverage
spatial and temporal localities

Time (s)

Time To Answer
Pending Questions

Time to evaluate polynomial (1 thread)

1,8

1,6
1,4
1,2
1 B NumPy
B Numexpr
0,8
0,6
0,4
" L
0

25*x**3 + . 75*x*2 -1.5"x = 2 ((.25"x + .75)*x - 1.5)*x

Computing "a*b+c" with NumPy. Temporaries goes to memory.

e
cache

a*b+c

memory

a*b

Computing "a*b+c" with Numexpr. Temporaries in memory are avoided.

cache

a b C a*b+c

memory

a*b

Second Message of the
Day

® Before spending too much time optimizing
by yourself make you a favor:

Use the existing, powerful libraries out
there

It is pretty difficult to beat performance
professionals!

Optimal Containers for
Big Data

The Need for a Good
Data Container

® Joo many times we are focused on
computing as fast as possible

® But we have seen how important data
access Is

® Hence, having an optimal data structure is
critical for getting good performance when
processing very large datasets

No Silver Bullet

® Unfortunately, there is not (and probably
will never be) a fit-all data container

® VWe need to make our mind to the fact that
we need to choose the ‘optimal’ container

for our case

NumPy:A De Facto
Data Container

NumPy is the standard de facto in-memory
container for Big Data applications in the
Python universe

\ -1 <A NVIDIA.

S ra CUDA &) scikitsimage
PyOpenCL PyCU DA

E—M StatsModlels

Statistics in Pytlaom

L/
-

CONTINUUM

AAAAAAA cCsSs

NumPy Advantages

Multidimensional data container
Efficient data access for many scenarios
Powerful weaponry for data handling

Efficient in-memory storage

Nothing Is Perfect

® The NumPy container is just great for many
use cases

® However, it also has its own deficiencies:

® Not efficient for appending data (so data
containers tend to be static)

® Cannot deal with compressed data transparently

® |imited disk-based data support

Appending Data in
Large NumPy Objects

COP)"

new data to append / New memory

allocation

* Normally a realloc() syscall will not succeed
* Both memory areas have to exist simultaneously

bcolz
Overcoming NumPy
Limitations

bcolz

Columnar, chunked, compressed data
containers for Python

Offers carray and ctable container flavors

Implements just a few simple, but fast
iterators over the containers, supporting
query semantics

Uses the powerful Blosc compressor under
the hood

Why Columnar?

® When querying tabular data, only the
interesting data is accessed

® Less |/O required

In-Memory Row-Wise Table

Interesting column

SegmR Rewet L N rows

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 64 bytes (cache line)

In-Memory Column-Wise Table

Interesting column

\
Swng o Fowsd Sung

N rows

Interesting Data: N * 4 bytes (Int32)
Actual Data Read: N * 4 bytes (Int32)

Why Chunking?

® Chunking means more difficulty handling
data, so why bother?

® Efficient enlarging and shrinking

® On-flight compression possible

Appending Data in NumPy

s

Copy!

O |
New memory

allocation

- Both memory areas have to exist simultaneously

Appending Data in bcolz

carray to be enlarged Final carray object

-

Compress

*

Only a compression operation on new data is required

Why Compression (1)?

More data can be stored in the same amount of media

\ —
\\

3Xx more data

Why Compression (ll)?

Less data needs to be transmitted to the CPU

Disk or Memory Bus

Transmission + decompression faster than direct transfer?

Blosc: Compressing Faster

Than Memory Speed

Speed (MB/s)

35000

30000

25000

20000

15000

10000

5000

Decompression speed (256.0 MB, 8 bytes, 19 bits)
3 ? >k ! ?

1 threads
2 threads
3 threads [
4 threads
5 threads
6 threads
7 threads
8 threads
9 threads
10 threads
11 threads

12 threads

rrrrrrrrrrrrrrr

i
2 3

4
Compresssion ratio

Streaming Analytics with bcolz

itertools,
Py Toolz,
CyToolz

4

bcolz
iterators/filters
with blocking

ﬁ bcolz container
(disk or memory)

Some Benchmarks With Real Data:
The MovieLens Dataset

Materials in:
https://github.com/Blosc/movielens-bench

The MovielLens Dataset

® Datasets for movie ratings

e Different sizes: |00K, IM, I0M ratings (the
|OM will be used in benchmarks ahead)

® [he datasets were collected over various
periods of time

Querying the
MovielLens Dataset

import pandas as pd
import bcolz

Parse and load CSV files using pandas

Merge some files in a single dataframe

lens = pd.merge(movies, ratings)

The pandas way of querying

result = lens.query("(title == 'Tom and Huck (1995)') & (rating == 5)")
[“user_id']

Get a ctable container
zlens = bcolz.ctable.fromdataframe(lens)

The bcolz way of querying (notice the use of the "where iterator)
result = [r.user_id for r in dblens.where(

"(title == 'Tom and Huck (1995)') & (rating == 5)", outcols=['user_id'])]

Size of Datasets

Size of the datasets

bcolz (disk, compr)l . size (MB)

bcolz (memory, compr)l

pandas

[==]
w
(==}
[==]

1606 1566 2600

« Compression means ~20x less space
» The uncompressed ctable is larger than pandas

bcolz Query
Performance

Complex query times for MovielLens 10M

bcolz (disk, compr) N time (sec)

bcolz (memory, compr)

bcolz (memory, nocompr)

pandas

- Compression leads to better query speeds (15% faster)
- Querying a disk-based ctable is fast!

Final Take Away
Message for Today

® Big data is tricky to manage:

Look for the optimal containers for your
data

Spending some time choosing your
appropriate data container can be a big time
saver in the long run

Summary

® Nowadays you should be aware of the
memory hierarchy for getting good
performance

® | everage existing memory-efficient libraries
for performing computations optimally

® Use the appropriate data containers for
your different use cases

References

® Why Modern CPUs Are Starving And What
You Can Do About It

® bcolz: http://github.com/Blosc/bcolz

® Blosc ecosystem: http://blosc.io

Thank you!

Questions!

francesc@blosc.io
@FrancescAlted

