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Year after year we continue to see a trend where​ CPUs get faster and faster in comparison with 
the evolution of memory speed​.  As a consequence, modern CPUs are underutilized and 
memory buses are often saturated, so why not take some of the storage operations out of 
memory and put them on the CPU caches? 
 
In this installment we will see how to implement computational kernels on top of data structures 
that are cache- and compression-friendly, and we will examine how they perform on a range of 
different CPU architectures. 
 
For demonstration purposes, I will run a simple task: summing up an array of values using the 
super-chunk​ data container in the ​Blosc2​ library.  While this seems trivial, it exposes a couple of 
properties that are important for our discussion: 
 
1. This is a memory-bounded task. 
2. It is representative of many aggregation/reduction algorithms that are routinely used out in the 
wild. 
 

Datasets Considered 
 
In this study I have chosen 2 different datasets: 
 

1. Synthetic​: This has been chosen so that compression, and especially decompression, 
reaches top compression and top speeds on Intel and ARM architectures. 

2. Real​: The one chosen is the result of a ​regional reanalysis covering the European 
continent​, and in particular, the precipitation data of a certain region.  Computing the 
aggregation of this data is representative of a ​catchment average of precipitation over a 
drainage area. 

 
Caveat: ​In an attempt to make the task of compressing the synthetic dataset not totally trivial, 
rather than using e.g. a dataset of zeroes, I have chosen a monotonically ascendent series of 
integers that enforces the need for the shuffle filter (so that the codec to compress/decompress 
can run faster and more efficiently).  This is still representative of a compression pipeline in 
Blosc2. 
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OpenMP: High performance for multi-processor 
systems 
 
When running high performance multi-threaded computing tasks, OpenMP is the library that 
should be tried first.  OpenMP is a series of so-called 'pragmas' that can be used to annotate 
existing code in C/C++ or Fortran for producing parallel applications.  The complete code that 
benchmarks the sum aggregation is here​. 
 
This simple snippet  implements the summing algorithm with OpenMP : 
 
  #pragma omp parallel ​for​ reduction (+:sum) 
  ​for​ (i = ​0​; i < N; i++) { 
    ​sum += udata[i]; 
  } 

 
The pragma tells the compiler that it should try to parallelize the loop, and that there is a shared 
variable that is used for the reduction (namely 'sum').  In this case, this is enough to achieve 
peak performance on multi-core processors. I then run this task: 
 
  $ OMP_NUM_THREADS=4 OMP_PROC_BIND=spread ./sum_openmp 

 
The ​OMP_NUM_THREADS ​ environment variable specifies the number of threads that OpenMP 
should use.  The ​OMP_PROC_BIND=spread ​ variable tells OpenMP to not move threads among 
cores; rather, a sparse distribution across cores (respecting affinity policy and core nesting 
level) should be used. This normally gives optimal speed in this aggregation scenario. 
 
On our reference server (Intel Xeon E3-1245 v5 4-Core processor @ 3.50GHz with 
hyper-threading) I get the following results for summing an array of 100 million integers (int64).  I 
plot performance in GB/s, as this makes more sense for these kind of memory-bound problems: 
 

https://github.com/Blosc/c-blosc2/blob/master/bench/sum_openmp.c


 
 
So, although threading certainly improves performance, this increase is far from being linear, 
which is a clear sign that this computation is memory-bound.  Interestingly enough, using 
several threads generally increases memory bandwidth in many systems, which most likely 
accounts for the performance improvement, rather than the increased computing capacity of 
multiple cores. 
 
Just to give you an idea of how idle the CPU is during this simple task, if we replace the actual 
dataset by something that does not require to travel from memory, like: 
 
  #pragma omp parallel ​for ​ reduction (+:sum) 
  ​for ​ (i = ​0 ​; i < N; i++) { 
    ​// sum += udata[i]; 
    sum += i;  ​// no need to transfer data from memory 
  } 

 
With that, the speed of the aggregation can be accelerated by more than 5x.  That means that, 
when the dataset has to be transmitted from the memory to the CPU, only 1 clock cycle every 5 
is used for performing the aggregation; or put in another words, more that 80% of the CPU is 
idle when this task is running. 
 
The central idea here is to put these idle CPU clock cycles to do some useful work (like 
decompressing data chunks) that can benefit our computation.  



Operating with compressed datasets 
 
Now, let’s see what happens when we perform the same operation, but using compressed data. 
To do this efficiently, we need: 
 
1. A data container that supports on-the-fly compression. 
 
2. A blocking algorithm that leverages the caches in CPUs. 
 
For the data container we use the ​super-chunk​ data structure provided by Blosc2.  These 
super-chunks host the data in chunks, so we shall iterate the operations over the complete 
chunks.  And most importantly, in order to allow maximum efficiency when performing 
multi-threaded operations, the size of each chunk should fit in non-shared caches (namely, L1 
and L2 in modern CPUs).  This optimization avoids concurrent access to bus caches as much 
as possible, thereby allowing dedicated access to data caches in each core. 
 
The algorithm I will implement on top of the super-chunk follows the principles of the blocking 
computing technique:  for every chunk, we bring it to the CPU, decompress it (so that it stays in 
cache), run all the necessary operations on it, and then proceed to the next chunk. 
 

 
 
Here’s how the super-chunk is constructed: 
 
  schunk = blosc2_new_schunk(cparams, dparams); 



  ​for ​ (nchunk = ​0 ​; nchunk < NCHUNKS; nchunk++) ​{ 
    ​for ​ (i = ​0 ​; i < CHUNKSIZE; i++) { 
      chunk_buf[i] = udata[i + nchunk * CHUNKSIZE]; 

    } 

    blosc2_append_buffer(schunk, isize, chunk_buf); 

  ​} 
 

 

 
Essentially we fill a chunk buffer one at a time, then we append it to the super-chunk (​schunk ​) 
for compression and storage (​blosc2_append_buffer ​).  Note that we could have used 
pragmas to accelerate the build, but this is not our main goal, so I decided to keep it simple. 
 
And finally, here’s the algorithm for performing the sum of the compressed dataset: 
 
  compressed_sum = ​0​; 
  nchunks_thread = NCHUNKS / nthreads; 

  ​#pragma omp parallel ​for​ private(nchunk) reduction (+:compressed_sum) 
  ​for​ (j = ​0​; j < nthreads; j++) { 
    dctx[j] = blosc2_create_dctx(dparams); 

    ​for​ (nchunk = ​0​; nchunk < nchunks_thread; nchunk++) { 
      blosc2_decompress_ctx(dctx[j], 

                            schunk->data[j * nchunks_thread + nchunk], 

                            (​void​*)(chunk[j]), isize); 
      ​for​ (i = ​0​; i < CHUNKSIZE; i++) { 
        compressed_sum += chunk[j][i]; 

      } 

    } 

  } 

 
Here we can see 3 different loops.  The first loop deals with different threads, the second 
traverses the different chunks that are embedded in the super-chunk, and the inner loop 
calculates the actual sum per chunk.  The OpenMP pragma is basically  the same one we used 
in  the uncompressed data sum example, but it is used only in the outer loop (for coarse grain 
parallelism).  The important difference with the uncompressed loop example is that we 
introduced the two outer loops to 1) traverse the chunks and 2) take advantage of different 
decompression contexts (​dctx ​) in every thread, so as to permit completely independent 
operations.  This increased complexity is typical when dealing with data in ​blocks​ (or chunks), 
the common technique for optimizing algorithms introduced above. 
 
As already stated, choosing a chunk size (​CHUNKSIZE ​) that would fit in the non-shared cache is 
critical for best performance.  How do we calculate what the chunk size should be?  We will use 
a chunk size of 4,000 elements in our next experiments.  This number is determined in the 
following way:  



● We need two buffers, one for the source data and one for the destination data. 
● Blosc2 needs a third internal buffer to keep intermediate results derived from the shuffle 

filter for decompression. 
● We are using 64-bit integers for this exercise. 
● So the final working chunk size that will fit in the  caches will be 8 bytes (for a 64-bit 

integer) * 4,000 elements * 3 caches ~= 100,000 bytes. This should fit comfortably in L2 
caches on most modern CPU architectures (256 KB or even higher).  

Please note that this size is critical, and might require some additional fine-tuning for different 
architectures (see notes for specific CPU experiments). 
 
 

Synthetic Dataset 
Let’s start with the synthetic dataset and see how our compressed sum algorithm performs 
compared to the first uncompressed example. Since not all codecs inside Blosc2 (BloscLZ, LZ4, 
LZ4HC, Zstd and Lizard) nor CPUs are created equal (Intel, AMD and ARM have a large 
number of different implementations), we will measure how different configurations perform 
when running exactly the same computation. Some surprises are in store.  

Choosing the Compression Codec 
Blosc (both version 1 and version 2) supports different compression codecs.  For Blosc2 the 
current set is BloscLZ, LZ4, LZ4HC, Zstd and Lizard (also Snappy, mainly for backward 
compatibility with Blosc1).  Interestingly enough, my experience is that the different codecs 
expose different compression ratios and speeds when using different datasets or different CPU 
architectures.  For example, for the synthetic dataset, BloscLZ usually decompresses the 
fastest, as can be seen in our reference platform (Intel Xeon E3-1245) when using 8 threads (for 
maximum performance): 



 
As regards to compression ratio, other codecs are generally more capable than BloscLZ: 
 

 
However, for this study we are more interested in having the best decompression speed, and 
this is why we are going to use BloscLZ with compression level 9 for all the benchmarks with 
synthetic data (incidentally, for the real data section things are not so easy and we will need to 
carefully choose our codec per every CPU as we will see). 



Results on Different CPUs for the Synthetic Dataset 
 

Reference: Intel Xeon E3-1245 v5 4-Core processor @ 3.50GHz 
 
This is a mainstream, somewhat 'small' processor for servers that has an excellent 
price/performance ratio.  Its main virtue is that, due to its small core count, the CPU can be run 
at considerably high clock speeds which, combined with a high IPC (Instructions Per Clock) 
count, delivers considerable computational power.  These results are a good baseline reference 
point for comparing other CPUs packing a larger number of cores (and hence, lower clock 
speeds).  Here it is how it performs: 
 

 
 
We can see the poor scalability of the uncompressed dataset (although it does reach the 
respectable speed of 26 GB/s throughput), compared to using more threads on a compressed 
dataset.  The compressed dataset scales much better, even beyond 4 threads.  Considering 
that this CPU has 4 physical cores, it is evident that Intel devised a good hyperthreading 
implementation on this CPU, reaching a speed of 51 GB/s, and almost doubling the speed for 
the uncompressed dataset. 

Intel i5 2-Core (6267U) processor @ 2,9 G 
 



This is the processor included on my MacBook Pro (2016 model).  It has just 2 cores with 
hyperthreading, but its clock speed is relatively high: 

 
 
In this case, the bandwidth for reading memory is high (26 GB/s);  at 24 GB/s, decompression is 
close to this mark.  Hyperthreading is doing a good job here, although admittedly not as good as 
in our reference (probably because hyperthreading on server CPUs has more chance to shine 
than on laptop CPUs, but this is just a guess). 
 

AMD EPYC 7401P 24-Core Processor @ 2.0GHz 
 
This CPU implements one of the most powerful architectures ever created by AMD.  It packs 24 
physical cores, although internally they are split into 2 blocks with 12 cores each.  Here is how it 
behaves: 
 



 
 
At about 30 GB/s, the highest speed for uncompressed data is reached when using 4 threads. 
Beyond that, there is no scalability at all.  On the other hand, the compressed algorithm can 
exceed 100 GB/s at 20 threads, although adding more threads does not increase throughput. 
This a good example of how the new generation of multi-core architectures takes advantage of 
compression to deliver better performance. 

Intel Scalable Gold 5120 2x 14-Core Processor @ 2.2GHz 
 
Here we have one of the latest and most powerful CPU architectures developed by Intel.  We 
test it in a machine with 2 CPUs, each containing 14 cores. Here’s it how it performed: 
 



 
 
We reach the highest speed for the uncompressed operation with 24-50 threads, almost 
achieving the impressing speed of 70 GB/s; this is the first time that I see such a high speed for 
operations on uncompressed data on a real system. This boost is most likely due to the 6 
high-speed memory access channels per CPU.  On the other hand, the compressed dataset 
reaches its peak performance with 50 threads (no idea on why 50 is a magic number here), 
exceeding the impressive mark of 144 GB/s (another first!), consistently beating the 
performance of the uncompressed dataset starting at 20 threads. 

 
Cavium ARMv8 2x 48-Core 
 
We are used to seeing ARM architectures powering most of our phones and tablets, but seeing 
them performing computational duties is far more uncommon.  This does not mean that there 
are not ARM implementations that cannot power big servers.  Cavium, with its 48-core in a 
single CPU, is an example of a server-grade chip. 
 



 
 
Here we see that for the uncompressed data the memory bandwidth scales quite linearly, 
reaching a 35 GB/s peak at 48 threads, and then follows a funny pattern.  The performance for 
compressed data scales quite well also, reaching a peak of 30 GB/s at 50 threads, quite close 
to the uncompressed data algorithm which is an interesting fact for a supposedly ‘weak’ 
architecture like ARM.  It turns out that Blosc2 has support for NEON, the specific SIMD 
instruction set for ARM CPUs, which it accounts for such high decompression speeds.  While 
these figures cannot compete with modern Intel/AMD architectures yet (see above), they show 
that the ARM architecture can be a serious contender. 
 
[As an aside, Cavium has just announced the availability of its new ​ThunderX2 CPU​, which, with 
32 high-performance ARMv8 cores and, most importantly, an impressive 8-channel DDR4 
memory subsystem, may be able to rival even the most powerful architectures by Intel and 
AMD.  Unfortunately, I have no access to this chipset If you do, I'd be interested in seeing your 
results from these tests run on this CPU.] 

Raspberry Pi 3b+ 4-Core @ 1,4 GHz 
 
Finally, and to close this CPU overview for the synthetic dataset, we will test one of the most 
popular and recent computer systems: the Raspberry Pi.  In this case I tested the model 3b+, 
which sports a 4-core Cortex-A53 ARM CPU with NEON support. 
 

https://www.anandtech.com/show/12694/assessing-cavium-thunderx2-arm-server-reality


 
 
In this case performance for uncompressed data peaks at 2.5 GB/s when using 2 threads, and 
does not seem to scale well after that; however, the performance with compressed data does, 
reaching approximately the same speed (2.4 GB/s) when using 4 threads.  The fact that such a 
low-power CPU can execute decompression operations so effectively seems to contradict the 
general belief that you need a speedy CPU to break down the memory wall by using 
compression. However, provided that these CPUs are coupled with low memory-bandwidth 
subsystems, they can still decompress at par speeds than memory. 
 
Incidentally, even though 2.5 GB/s may seem a small figure compared with e.g. our reference 
Intel Xeon platform (with a peak of 26 GB/s and 51 GB/s with compression), it is important to 
stress out that, at about 5 Watts with maximum load, the Raspberry Pi consumes a lot less 
power than a regular server (~100 Watts for our reference).  And although the raw memory 
bandwidth per Watt is actually beneficial for ARM (0.5 vs 0.25 GB/(s * Watt)), compression 
actually equalizes this balance for both architectures (0.5 GB/(s * Watt)). 
 
Note​: For best performance in the Raspberry Pi, the total size of the dataset was reduced to 10 
millions of elements and the chunksize was reduced to 1,000 elements (for a total of 24,000 
bytes of working size, counting the internal buffer).  This is probably due to fact that the L2 
cache in this CPU is shared (remember that using non-shared caches for hosting buffers for 
blocks is critical for performance). 
 



Precipitation Dataset 

We have seen how compression can help in doing operations with synthetic, well-compressible 
data, but indeed using real data would be more interesting. However, there is all kinds of real 
data out there, and among them, I am going to use one that is of common use in my work: 
precipitation measurements.  Other datasets will result in different results, so your mileage may 
vary. 

Caveat​: For the sake of easy reproducibility, for building the 100 million dataset I have chosen a 
small geographical area with a size of 150x150​ = 22,500 elements and reused these repeatedly 
so as to fill the final dataset completely.  As the size of the chunks that we are using in this 
section are still 4,000 elements and the super-chunk, as it is configured here, does not use 
redundancies from other chunks, the results obtained in this section can be safely extrapolated 
to an actual dataset made of real data (bar some small differences).  Also, the data type for the 
elements in this dataset is a ​float32​ (single precision floating point), quite usual in geo-sciences, 
and not an ​int64​ as in the synthetic dataset. 

Choosing the Compression Codec 
When determining the best codec for the precipitation dataset, it turns out that they behave 
quite differently both in terms of compression and speed.  This is quite usual, and is the reason 
why you should always try to find the best codec for your case.  Here you have how the different 
codecs behaves for our precipitation dataset in terms of decompression speed for our reference 
platform (Intel Xeon E3-1245): 
 

 

https://github.com/Blosc/c-blosc2/blob/master/bench/read-grid-150x150.py


 
In this case LZ4HC is the codec that decompress faster for any number of threads, and the one 
selected for the reference platform. And here are the results for the Cavium CPU: 
 

 
 

In this case is BloscLZ the one that achieves best ​absolute​ decompression speed.  So what I 
did was to select the codec that could decompress faster for some ​arbitrary​ number of threads. 
The selected codec for every platform will be conveniently specified in the plots below. 
 
For completeness, here there are the compression ratios achieved by the different codecs for 
the precipitation dataset: 
 



 
Although there are significant differences in the compression ratio, these usually come at the 
cost of compression/decompression time. Moreover, we are mainly interested in decompression 
speed, so we will use the latter as the only important parameter for codec selection. 
 

Results on Different CPUs for the Precipitation Dataset 
 



Reference: Intel Xeon E3-1245 v5 4-Core processor @ 3.50GHz 

 
Although reaching less speed, here we see a behaviour that is similar to the synthetic data 
scenario: nice scalability on the compressed dataset even using hyperthreading.  The 
performance peak for the compressed precipitation dataset (22 GB/s) is really close to the 
uncompressed one (27 GB/s); quite an achievement for a CPU with just 4 physical cores. 

Intel i5 2-Core (6267U) processor @ 2,9 G 

 



 
In the case of this laptop CPU we see that scalability for the compressed dataset is not as good 
as for our reference platform, and performance for the compressed dataset (a bit more of 9 
GB/s) is quite far from the uncompressed one (a solid 26 GB/s figure).  However, we should not 
forget that we are using the CPU with less number of cores (2) from all of our analysis. 

AMD EPYC 7401P 24-Core Processor @ 2.0GHz 

 
The EPYC behaviour for the compressed precipitation dataset is pretty amazing: it shows nice 
scalability through the whole range of cores in the machine --even when using hyperthreading--, 
reaching the best performance (45 GB/s) at precisely 48 threads, and well above the maximum 
performance achieved by the uncompressed dataset (30 GB/s). 



Intel Scalable Gold 5120 2x 14-Core Processor @ 2.2GHz 

 
In this case, the Intel Scalable also shows a nice scalability on the compressed dataset, all the 
way up to 56 threads (which is expected provided the 2x 14-core CPUs with hyperthreading); 
this is a remarkable feat for a bandwidth beast like this.  In absolute terms, the compressed 
dataset reaches a performance (68 GB/s) that is very close to the uncompressed one (72 GB/s). 



Cavium ARMv8 2x 48-Core 

 
Again, we see a nice scalability for the compressed dataset.  It is curious to see how the 
performance peaks at 64 threads and then drops significantly after that point (even if the CPU 
still has enough cores to continue the scaling).  At 15 GB/s, the best compressed mark is less 
than half of the best uncompressed figure (34 GB/s), but still in the same order. 

Raspberry Pi 3b+ 4-Core @ 1,4 GHz 
 



 
On its hand, the Raspberry shows a nice scalability throughout all the cores when processing 
the compressed dataset.  However, the absolute compressed performance (1.5 GB/s) is still a 
bit far from the uncompressed one (2.4 GB/s).  Probably another performance oriented CPU 
from ARM (like the Cortex A-7x instead of the A-53 here) would change this picture significantly. 

Conclusions for the Precipitation Dataset 
As expected, computational performance with real data is below of that when using a synthetic 
dataset, but we can observe two important points here: 
 

● The loss in speed is of the ​same order of magnitude​ than for the synthetic dataset, not 
more. 

● Performance for the compressed dataset scales very well on the number of threads (and 
in a similar way than with synthetic data).  With that, and provided the right CPU and 
amount of dedicated threads, the performance of compressed computations can be on 
par (or even surpass, like the AMD EPYC case) of that of uncompressed data. 

What We Learned 
 
From all we have seen, we can draw the following conclusions: 
 

1. Modern CPUs can use their idle computational power to alleviate the pressure that many 
applications put on their cache and memory subsystem.  The simple aggregation task 
above is representative of a memory-bounded computation where compression can 
actually help to reduce stress on memory buses. 

 



2. The systems that benefit the most from compression are those with relatively low 
memory bandwidth and CPUs with many cores.  In particular, the EPYC architecture is a 
good example of this kind of system, where we have shown how compression can 
ameliorate the performance as compared to an uncompressed dataset. 

 
3. ARM architectures, with their low power-consumption, theoretically one can pack many 

cores in the same CPU quite easily (Cavium being a nice example of this).  In that 
sense, ARM will probably become one of the best suited platforms for leveraging 
compression in the future. 

 
4. The appropriate codec to use within Blosc2 for maximum performance can vary 

depending on the dataset and the CPU used.  Having a way to automatically discover 
not only the best codec, but also the best compression level and other compression 
parameters, would be a nice addition to the Blosc2 library. 

 
5. And last, but not least, even if compression cannot always help in improving 

performance, it does normally improve memory and disk utilization, which is always a 
welcome feature in these Big Data ages.  And the fact that it also puts less stress on 
memory buses could lead to better overall performance for other applications in the 
system (but that depends a good deal on what these other applications are). 

 
We have seen that, with a basic understanding of the cache and memory subsystem, and by 
using appropriate compressed data structures, like the super-chunk in Blosc2, we can easily 
produce code that enables modern CPUs to perform operations on compressed data at a speed 
that approaches the speed of the same operations on uncompressed data (and sometimes 
exceeding it).  The takeaway message is that, by leveraging these knowledge and techniques, 
we can achieve computational speeds that can be on par with (or even surpass) traditional, 
uncompressed computations, while saving precious amounts of memory and disk space. 
 

Final thoughts 
 
To conclude, it is interesting to remember here what ​Linus Torvalds said​ back in 2006 (talking 
about the git system that he created the year before) : 
 

[...]  ​git actually has a simple  design, with stable and reasonably 
well-documented data structures. In  fact, I'm a huge proponent of designing 
your code around the data, rather  than the other way around, and I think it's 
one of the reasons git has  been fairly successful. 
[...] I will, in fact, claim that the difference between a bad programmer and a 
good one is whether he considers his code or his data structures more 

https://lwn.net/Articles/193245/


important. Bad programmers worry about the code. Good programmers 
worry about data structures and their relationships. 

 
Of course, we all know how drastic Linus can be in his statements, but I cannot agree more on how 
important is to adopt a data-driven view when designing our applications. But I'd go further and say 
that, when trying to squeeze the last drop of performance out of modern CPUs, data containers need 
to be structured in a way that leverages the characteristics of the underlying CPU, as well as to 
facilitate the application of the blocking technique (and thereby allowing compression to run 
efficiently). Hopefully, installments like this can help us explore new possibilities to break down the 
memory wall that bedevils modern computing. 
 
 

Appendix: Software used 
 
For reference, here it is the software that has been used for this blog entry. 
 

● OS: Linux Ubuntu 18.04 (except MacOSX 10.13.4 for the i5 CPU and Raspbian April 
2018 for the Raspberry Pi) 

● Compiler: GCC 7.3.0 
● C-Blosc2: 2.0.0a6.dev (2018-05-18) 
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